

#### Bauphysikalische Prozesse vs. Schadensprozesse

**DI Tobias Steiner** 



#### Bauphysikalische Prozesse vs. Schadensprozesse

- ■Relevante Prozesse
- ■Komponente Zeit
- Auffeuchtungsverhalten und Trocknungsverhalten von Baustoffen und Konstruktionen



### Übersicht

- •Allgemeines
- ■Porenstruktur von Baustoffen und ihre Eigenschaften
- Verwitterungsprozesse
- Kondensationsprozesse
- Befeuchtungsprozesse
- Deformationsprozesse



#### Allgemeines

- Schädigungsprozesse in und an Baustoffen
- Ursachen von Feuchteanreicherung in Bauteilen
- Hygrische Prozesse in und an Außenwandkonstruktionen
- ■Schadensschwerpunkte



### Übersicht über Schädigungsprozesse in und an Baustoffen

- Hygrische Einwirkungen
- ■Thermische Einwirkungen
- Statische Einwirkungen
- ■Einwirkung aus Herstellung und Gebrauch



- Hygrische Einwirkungen
  - Luftfeuchtigkeit
  - Kapillarwasser
  - Kondenswasser



- **■**Thermische Einwirkungen
  - Hitze
  - Kälte
  - ■Frost



- **■**Statische Einwirkungen
  - Belastung aus Eigengewicht
  - ■Belastung aus Auflast
  - ■Belastung aus Wind



- Einwirkungen aus Herstellung und Gebrauch
  - Heizung
  - Reinigung
  - Wurzelsprengung
  - Beschädigung
  - ■Falsche Materialwahl



#### Chemische Schädigungen

- Schadstoffbelastung
- Bindemittellösung
- Bindemittelumwandlung
- Salzschädigung



#### Biologische Schädigungen

- Mikro-Organismen
- Algen und Flechten
- Schimmelpilz
- ■Pilze



#### Ursachen von Feuchteanreicherung in Bauteilen

- Oberflächenkondensat
- Kernkondensation
- Hygroskopische Feuchteanreicherung
- Feuchtigkeit aus Bewitterung
- Feuchtigkeitszufuhr durch aufsteigende Feuchtigkeit



#### Oberflächenkondensat

- Taupunktunterschreitung
- ■Überhöhte Feuchteproduktion
- Geringe Lüftung
- Geringe Wärmedämmwerte
- Wärmebrücken
- Verminderung der Wärmedämmung durch Baufehler (Durchfeuchtung, Lufteintritt)



#### Kernkondensation

- Taupunktunterschreitung in Bauteilen
- Ungünstige Baustoffauswahl
- •Ungünstiger Schichtenaufbau
- Luftkonvektion in Bauteile hinein
- Dampfdichte Beschichtungen
- ■Fehlende Hinterlüftung



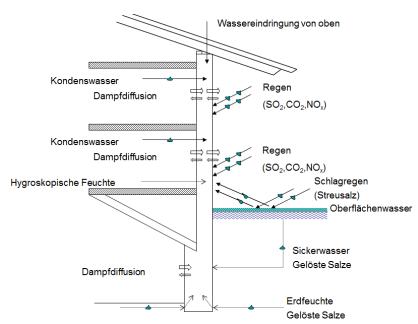
#### Hygroskopische Feuchteanreicherung

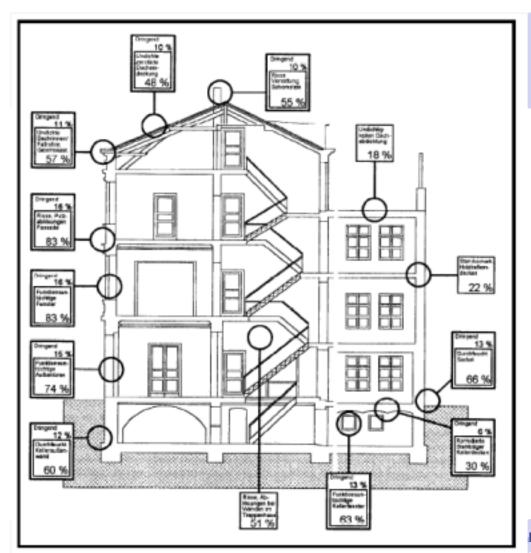
- Hygroskopische Stoffe
- salzhaltige Materialen
- Einwanderungen von hygroskopischen Stoffen durch Bewitterung, Bodenfeuchtigkeit und Nutzungsprozesse
- Kapillarkondensation



#### Feuchtigkeit aus Bewitterung

- Schlagregenbelastung
- Windbelastung
- •geringe Besonnung
- schlechte Feuchtigkeitsabgabe
- •ungeeignete Oberflächensysteme (keine wasserabweisenden bzw. wasserhemmenden Oberflächenschichten)

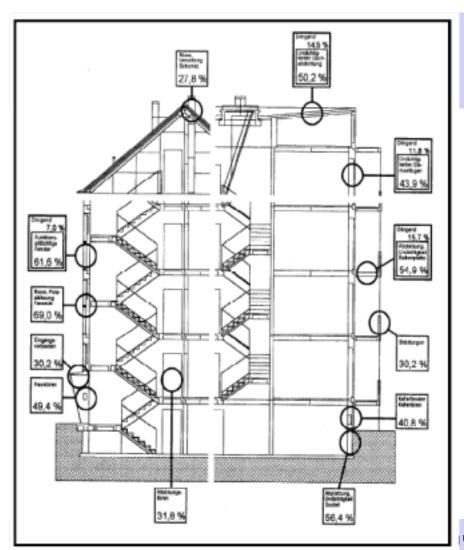




#### Feuchtigkeitszufuhr durch aufsteigende Feuchtigkeit

- keine oder defekte Feuchtigkeitssperren
- •hohe Bodenfeuchtigkeit
- Belastung durch zeitweise drückendes Wasser oder drückendes Wasser
- •Hangwasser



#### Hygrische Prozesse in und an Außenwandkonstruktionen








Schadensschwerpunkte am nicht industriell errichteten Mehrfamilienhaus (bis 1960),

Quelle: AlBAU





Schadensschwerpunkte an den Wohnungen in Fertigteilbauweise Quelle: AIBAU

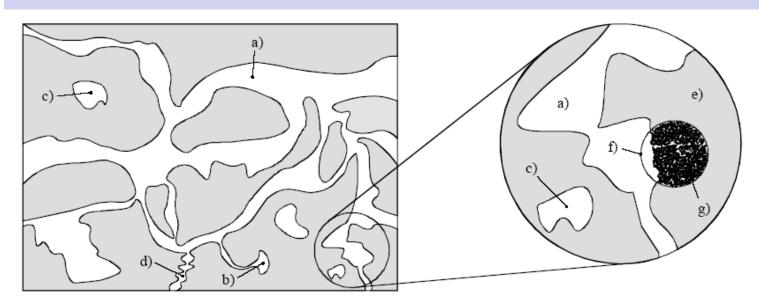


#### Übersicht

- •Allgemeines
- ■Porenstruktur von Baustoffen und ihre Eigenschaften
- Verwitterungsprozesse
- Kondensationsprozesse
- Befeuchtungsprozesse
- Deformationsprozesse



#### Porenstruktur von Baustoffen und ihre Eigenschaften

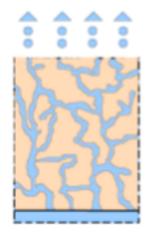

- Hygroskopische Feuchtigkeit
- Transportmechanismen
- Einfluss von Salzen auf den Feuchtehaushalt
- Praktischer Feuchtigkeitsgehalt von Baustoffen
- Kapillare Eigenschaften
- Wasseraufnahmekoeffizient
- Wassereindringkoeffizient



#### Porenstruktur von Baustoffen und ihre Eigenschaften

- Wasserkapazität
- Kritischer Feuchtigkeitsgehalt
- maximaler Wassergehalt
- Trocknungsverlauf
- Wasserdampfdiffusion durch poröse Baustoffe
- ■Bestimmung der Wasserdampfdurchlässigkeit



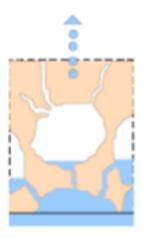



- a) Makropore (offene Pore)
- b) Sackpore
- c) isolierte Pore

- d) "Ink-Bottle"-Pore
- e) Baustoffgerüst (Strukturverband)

- f) Vergrößerungsausschnitt
- g) Mikroporen (Gelporen, ca. 10.000-fach vergrößert)






Α

großes Wasseraufnahmevermögen

großes Feuchtigkeitsabgabevermögen

z.B.: Ziegel, Gips



В

großes Wasseraufnahmevermögen

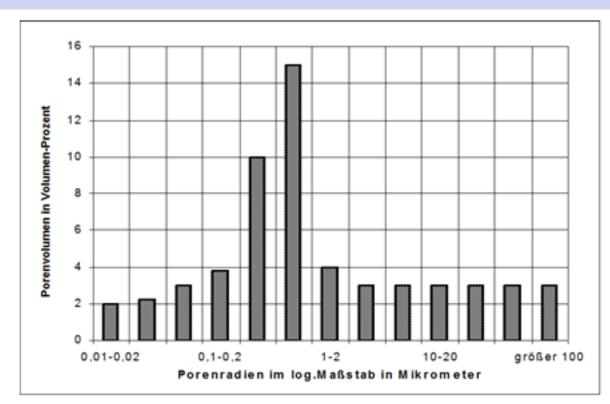
geringes Feuchtigkeitsabgabevermögen

z.B.: Gasbeton



С

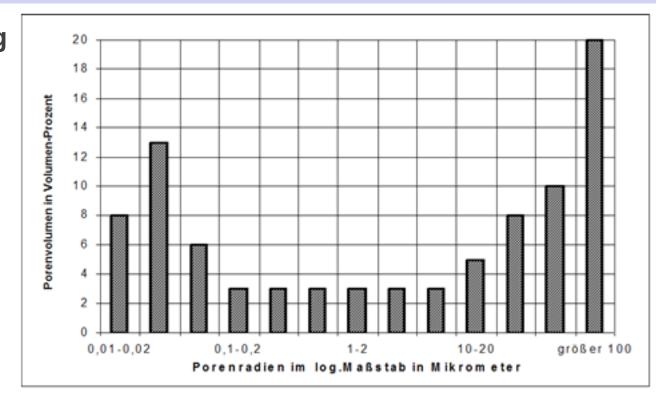
geringes Wasseraufnahmevermögen


geringes Feuchtigkeitsabgabevermögen

z.B.: Schwerbeton, Blähbeton



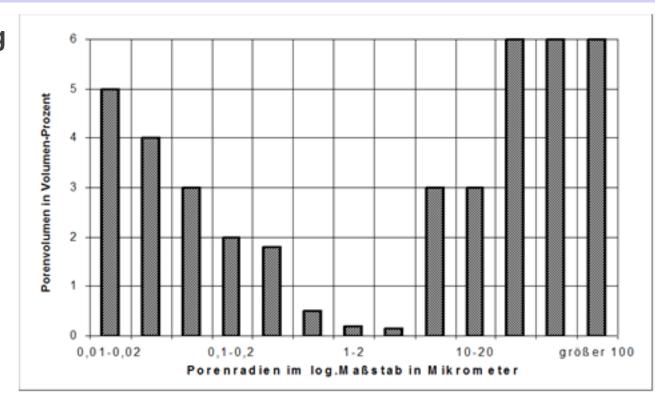
## Porenradienverteilung von Ziegel


Kapillarer Wassertransport

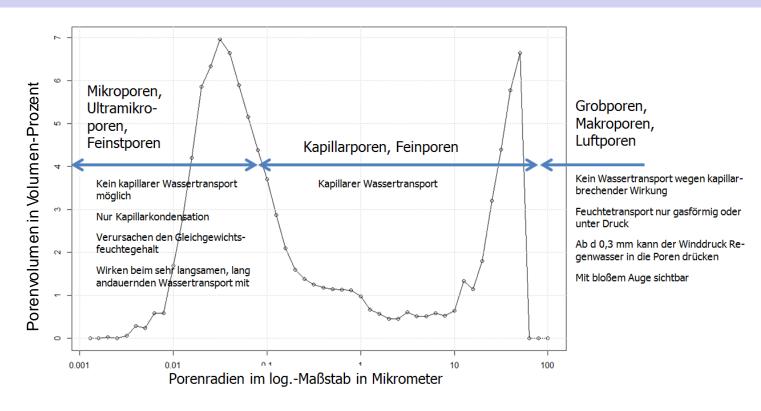




## Porenradienverteilung von Porenbeton

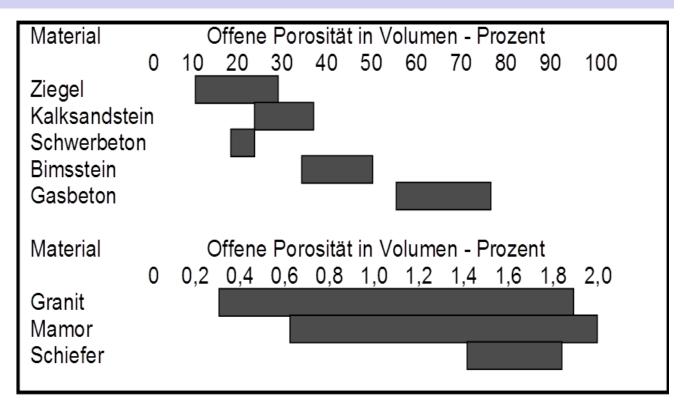

- Sorption
- Regenaufnahme






## Porenradienverteilung von Kalksandstein

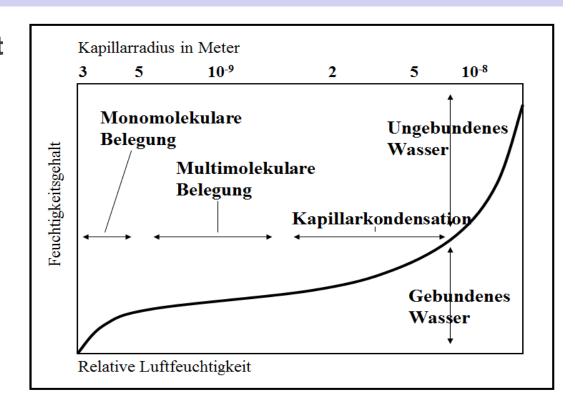
- Sorption
- Regenaufnahme







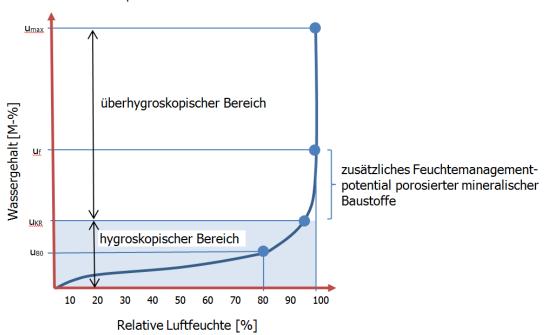




# Offene Porosität unterschiedlicher Materialien





#### Hygroskopische Feuchtigkeit

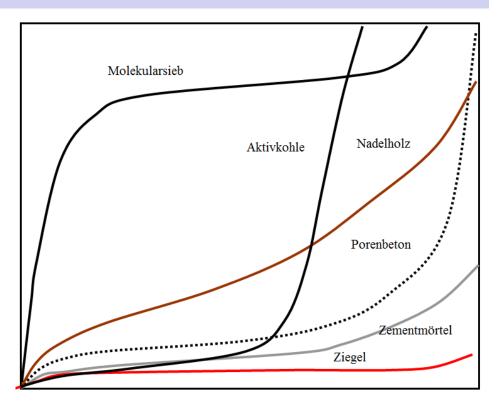

- Kapillarkondensation
- Sorptionsprozesse
- Adsorption
- Hydratation





#### Sorptionsisotherme

Schematische Darstellung einer typischen Sorptionsisotherme eines porosierten mineralischen Baustoffs





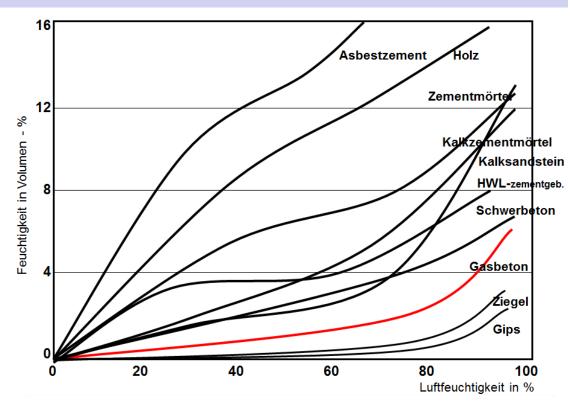

#### Sorptionsisotherme

- Zementmörtel
- •Mauerziegel
- Porenbeton

im Vergleich zu zwei Stoffen mit monodispersen Porensystemen (= eine Größenklasse)

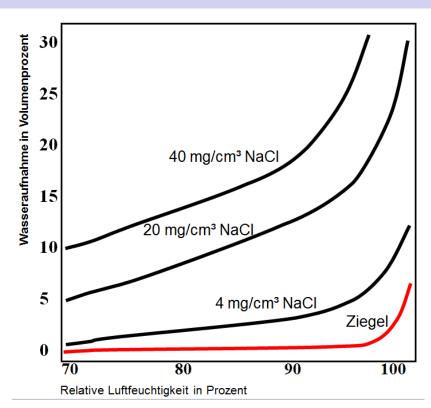





## Sorptionsstadien & Transportmechanismen

Darstellung der Sorptionsstadien und Der Transportmechanismen bei zunehmender Befeuchtung eines porösen Stoffes

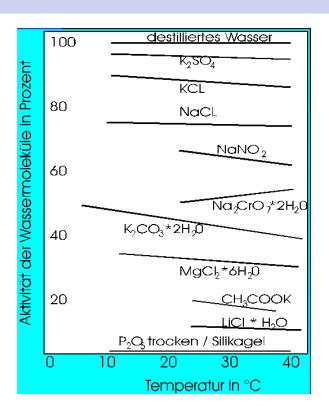





## Feuchtigkeitsgleichgewichtszustände Sorptionsisotherme






# Einfluss von Salzen auf den Feuchtigkeitshaushalt





### Aktivität von Salzen

Salze können Wasser anlagern und Lösungen bilden. Je geringer das Aktivitätsniveau ist, umso stärker ist der hygroskopische Effekt





### Hygroskopische Eigenschaften von Salzen

| Salz               | Löslichkeit<br>g /100 ml | Aktivität - ab einer<br>rel. LF |
|--------------------|--------------------------|---------------------------------|
| Na2CO3 * 10 H2O    |                          |                                 |
| Soda               | 21                       | 92                              |
| Na2SO4 * 10 H2O    |                          |                                 |
| Glaubersalz        | 11                       | 87                              |
| NaCl               |                          |                                 |
| Kochsalz           | 36                       | 75                              |
| Mg(NO3)2 * 6 * H2O |                          |                                 |
| Magnesiumnitrat    | 125                      | 53                              |
| Ca(NO3)2 * 4 * H2O |                          |                                 |
| Calciumnitrat      | 266                      | 50                              |
| K2CO * 2 * H2O     |                          |                                 |
| Pottasche          | 147                      | 43                              |
| MgCI * 6 * H2O     | <u> </u>                 | ·                               |
| Nagnesiumclorid    | 167                      | 33                              |
| CaCl * H2O         |                          |                                 |
| Calciumclorid      | 75                       | 29                              |
|                    |                          |                                 |



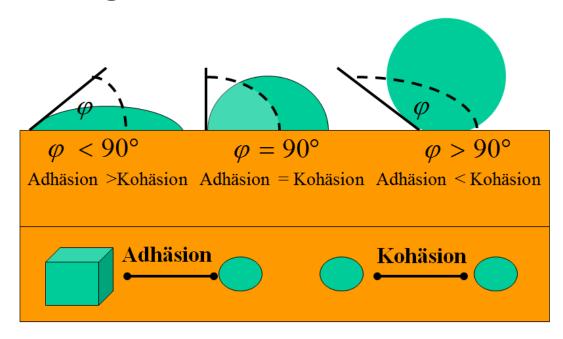
Hygroskopische Wasseraufnahme von Ziegelsteinen mit und ohne Versalzung

| Hygroskopische Wasseraufnahme von Ziegelsteinen mit und ohne<br>Versalzung |                        |                                                                 |     |      |      |
|----------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------|-----|------|------|
|                                                                            | Versalzungs-           | Wasseraufnahme in M-%                                           |     |      |      |
| Salzart                                                                    | grad in mg/g<br>Ziegel | 20 Tage 20 Tage 20 Tage 180 Tag<br>65%r.F. 86%r.F 97%r.F 83%r.F |     |      |      |
|                                                                            |                        | 0,1 0,2 0,3 0,3                                                 |     |      |      |
| NaCl                                                                       | 29                     | 1,0                                                             | 5,5 | 9,3  | 9,5  |
| NaCl                                                                       | 43                     | 1,6 6,2 11,1 13,2                                               |     |      |      |
| MgSO <sub>4</sub>                                                          | 55                     | 2,3                                                             | 3,1 | 4,1  | 4,5  |
| MgSO <sub>4</sub>                                                          | 28                     | 1,3                                                             | 2,8 | 2,2  | 2,9  |
| Ca(NO <sub>3</sub> ) <sub>2</sub>                                          | 82                     | 5,1 7,2- 10,8 12,3                                              |     |      |      |
| Ca(NO <sub>3</sub> ) <sub>2</sub>                                          | 107                    | 5,2                                                             | 9,4 | 12,1 | 12,5 |



### Praktischer Wassergehalt nach Cammerer

| Material             | Wassergehalt in<br>Volumen-Prozent |
|----------------------|------------------------------------|
| Vollziegelwände      | 1,0 - 2,5                          |
| Hohlziegelwände      | 1,5 - 4,0                          |
| Kalksandstein        | 3,5 - 13,0                         |
| Bimsbaustoffe        | 3,5 - 13,0                         |
| Gas- u. Schaumbeton  | 3,5 - 13,0                         |
| Kies- u. Splittbeton | 3,5 - 13,0                         |
| Innenputze           | 1,0 - 10,0                         |
| Außenputze           | 1,0 - 7,0                          |




### Praktische Feuchtigkeitsgehalte von Baustoffen

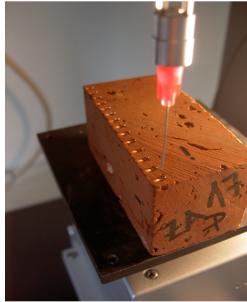
| Baustoffe                                  | Feuchtegehalt<br>in V - % | Feuchtegehalt<br>in M - % |
|--------------------------------------------|---------------------------|---------------------------|
| Ziegel                                     | 1,5                       | -                         |
| Kalksandstein                              | 5                         | -                         |
| Beton mit dichten Zuschlägen               | 5                         | -                         |
| Beton mit porigen Zuschlägen               | 15                        | -                         |
| Leichtbeton                                | 5                         | -                         |
| Porenbeton                                 | 3,5                       | -                         |
| Gips, Anhydrit                             | 2                         | -                         |
| Gußasphalt, Asphaltmastix                  | 0                         | 0                         |
| Mineralische Faserdämmstoffe               | -                         | 1,5                       |
| Schaumglas                                 | 0                         | 0                         |
| Holz und Holzwerkstoffe                    | -                         | 15                        |
| Schilfrohrmatten, Organische Dämmstoffe.   | -                         | 15                        |
| Pflanzliche Faserdämmstoffe                | -                         | 15                        |
| Korkdämmstoffe                             | -                         | 10                        |
| Schaumkunststoffe (Polystyrol,Polyurethan) | -                         | 5                         |



### Verhalten von Flüssigkeit an der Oberfläche von Baustoffen






### Verhalten von Flüssigkeit an der Oberfläche von Baustoffen

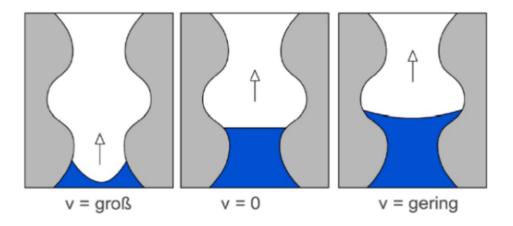


Messgerät DAS 100 ,Krüss'



Wassertropfen auf behandelter Ziegelprobe

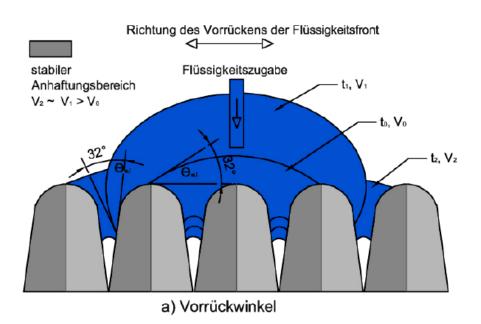



Dosiersystem setzt Tropfen mit definiertem Volumen ab



### Flüssigkeit - Feststoff

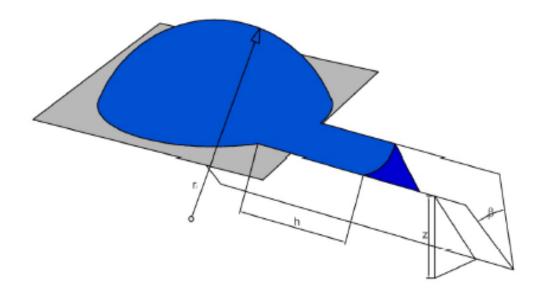
Oberflächenspannung, Rauhigkeit, Porosität,


Kapillarität, Homogenität, Chemische Zusammensetzung, ...



Kapillare Steiggeschwindigkeit bei unterschiedlicher Neigung der Kapillarwand




### Flüssigkeit - Feststoff



Rauhigkeitseinflüsse auf den makroskopischen Vorrückwinkel



### Flüssigkeit - Feststoff





### Kapillare Kraft- und Druckverhältnisse und Steighöhe

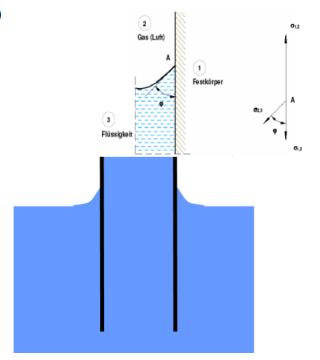
### Kapillarkraft

$$F_{kapillar} = 2 \cdot \pi \cdot r_{kapillar} \cdot \sigma \cdot \cos(\theta)$$

9 – Benetzungswinkel

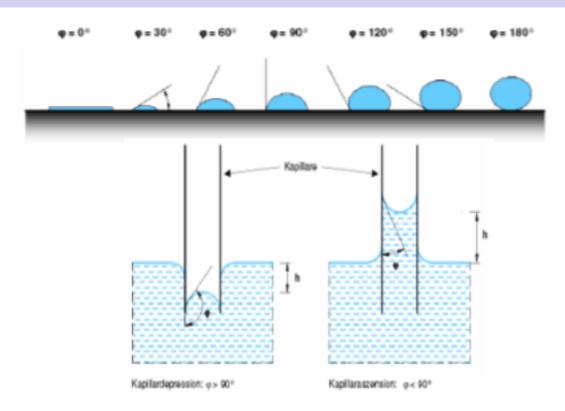
 $\sigma$  – Oberfläche nspannung

### Kapillardruck


$$p_{\textit{kapillar}} = \frac{2 \cdot \sigma \cdot \cos(\theta)}{r_{\textit{kapillar}}}$$

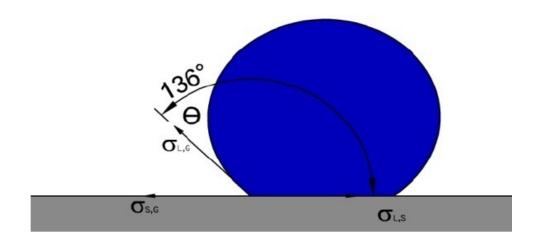
### Kapillare Steighöhe

$$h_{kapillar} = \frac{2 \cdot \sigma \cdot \cos(\vartheta)}{r_{kapillar} \cdot \rho \cdot g}$$


 $\rho$  – Dichte des Wassers

g – Erdbeschle unigung






### Kapillare Kraft- und Druckverhältnisse und Steighöhe





### **Statische Messung**





### **Dynamische Messung**

# Vorrückwinkel Flüssigkeit Luft Luft Festkörper Rückzugswinkel Flüssigkeit Luft Festkörper



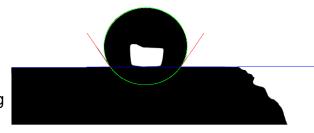
### **Auswertung**

- 1) Fotografische Erfassung des Tropfens
- 2) grafisch-mathematische Analyse der Tropfenkontur
- 3) mathematische Modelle zur Berechnung des Kontaktwinkels



### **Auswertung**

146.5 · 146.6

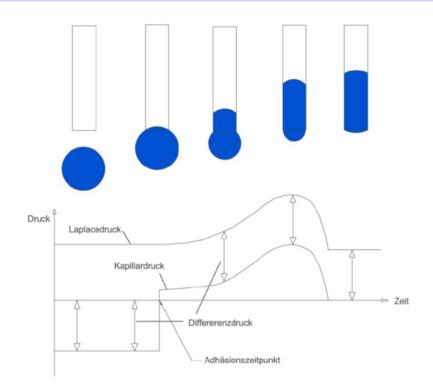

CA [L] 123.3 CA [R] 123.5



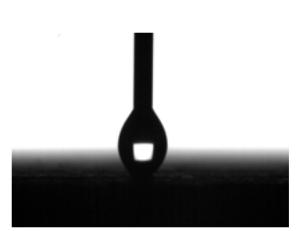
Anwendung des Kreissegmentverfahren zur Kontaktwinkelermittlung sinnvoll



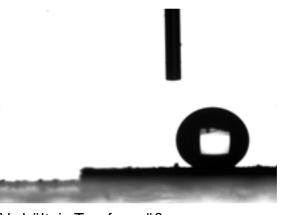
Höchste Genauigkeit durch die Anwendung des Young-Laplace Verfahrens



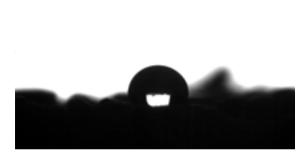

Auswertung anhand des Tangenten-, Höhen-Breiten- oder Young-Laplace-Verfahrens sinnvoll




### Kapillare Kraft- und Druckverhältnisse und Steighöhe


Druckverläufe beim Eindringen einer nicht benetzenden Flüssigkeit in eine Kapillare



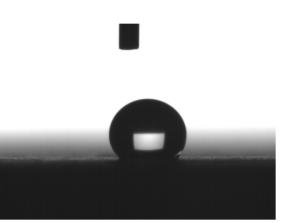





Kräftegleichgewicht zwis chen Nadel und Feststoffoberfläche bei zu kleinem Tropfen



Verhältnis Tropfengröße zu Bohrmehlschichtstärke




Aus wertbarkeit auch bei nicht horizontalen Probenoberflächen gegeben





Extreme Oberflächenrauhigkeiten beeinflussen die Messgenauigkeit



Typische Tropfenausbildung



Migration von Bohrmehl in die Flüssigkeitsoberfläche beim Absetzen des Tropfens



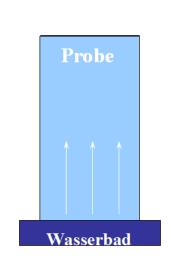
### Kapillare Steighöhen

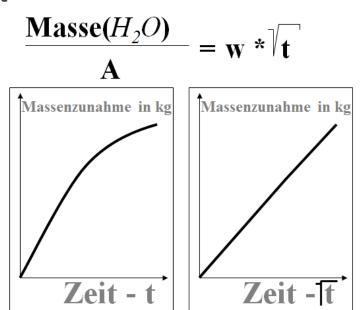
$$h_{kapillar} = \frac{2 \cdot \sigma \cdot \cos(\theta)}{r_{kapillar} \cdot \rho \cdot g}$$
$$\sigma = 72 \cdot 10^{-3} \frac{N}{m}$$

$$\theta = 90^{\circ}$$

$$\rho = 1000 \, kg / m^3$$

$$g = 9.81 \, m / s^2$$


$$h_{kapillar} = \frac{1,468 \cdot 10^{-5} \, m^2}{r_{kapillar}}$$


$$h_{kapillar} = \frac{0,01469 \, m \cdot mm}{r_{kapillar}}$$

| h <sub>kapillar</sub> | r <sub>kapillar</sub> |            |
|-----------------------|-----------------------|------------|
| 1,46 mm               | 10 mm                 |            |
| 1,46 cm               | 1 mm                  | Porenbeton |
| 14,6 cm               | 0,1 mm                | Porenbeton |
| 1,46 m                | 0,01 mm               | Mörtel     |
| 14,6 m                | 0,001 mm              | Ziegel     |
| 146 m                 | 0,0001 mm             | Beton      |
| 1,460 km              | 0,00001 mm            |            |



## Wassertransport durch kapillar aktive Bauteile Wasseraufnahmekoeffizient







# Wassertransport durch kapillar aktive Bauteile Wasseraufnahmekoeffizient

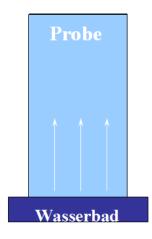


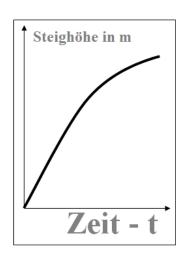


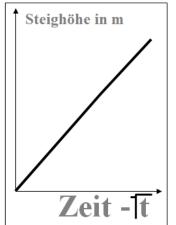
### Flüssigkeitstransport durch kapillar aktive Bauteile






# Wasseraufnahmekoeffizient von Baustoffen


| Tabelle Wasseraufnahmekoeffizient von Baustoffen |                                          |  |  |
|--------------------------------------------------|------------------------------------------|--|--|
| Baustoffe                                        | Wasseraufnahmekoeffizient in kg/m²*h 0,5 |  |  |
| Ziegel (1700 kg/m³)                              | 25                                       |  |  |
| Ziegel (2200 kg/m³)                              | 3                                        |  |  |
| Kalksandstein (1600 kg/m³)                       | 8                                        |  |  |
| Kalksandstein (1900 kg/m³)                       | 3                                        |  |  |
| Schwerbeton                                      | 1 – 2                                    |  |  |
| Porenbeton                                       | 4 – 8                                    |  |  |
| Gipsbauplatten (900 kg/m³)                       | 70                                       |  |  |
| Gipsbauplatten (600 kg/m³)                       | 35                                       |  |  |
| Kalkzementputz                                   | 2 – 4                                    |  |  |
| Zementputz                                       | 1 – 3                                    |  |  |
| Kunststoffdispersionsbeschichtung                | 0,05 - 0,2                               |  |  |




# Wassertransport durch kapillar aktive Bauteile Wassereindringkoeffizient

$$h = B * \sqrt{t}$$









# Wassereindringkoeffizient von Baustoffen

| Wassereindringkoeffizient von Baustoffen |                                           |  |
|------------------------------------------|-------------------------------------------|--|
| Baustoff                                 | Wassereindringkoeffizient<br>in m / h 0,5 |  |
| Ziegel (1700 kg/m³)                      | 0,14                                      |  |
| Ziegel (2200 kg/m³)                      | 0,005                                     |  |
| Kalksandstein (1600 kg/m³)               | 0,065                                     |  |
| Kalksandstein (1900 kg/m³)               | 0,02                                      |  |
| Schwerbeton                              | 0,005                                     |  |
| Porenbeton                               | 0,05                                      |  |
| Gipsbauplatten (900 kg/m³)               | 0,13                                      |  |
| Gipsbauplatten (600 kg/m³)               | 0,11                                      |  |
| Kalkzementputz                           | 0,08                                      |  |
| Zementputz                               | 0,02                                      |  |



### Hygrische Kennwerte von Baustoffen für Speicherung und Transport

Unter Wasserspeicherung versteht man den Gehalt an Wasser oder Feuchtigkeit, den ein Baustoff durch unterschiedliche Prozesse aufgenommen hat und der in Masse- oder Volumenprozent angegeben wird. **Der Feuchtigkeitsgehalt** wird angegeben in

$$u \ in \ Masse - \% = \frac{m_{H_2O}}{m_{Trockenmassedes Baustoffs}} \qquad \text{und} \qquad u \ in \ Volumen - \% = \frac{V_{H_2O}}{V_{Baustoff}}$$



### Hygroskopischer Feuchtigkeitsgehalt

•Kommt ein Baustoff in Kontakt mit der in der Luft enthaltenen Luftfeuchtigkeit, so sorbiert er den hygroskopischen Feuchtigkeitsgehalt.



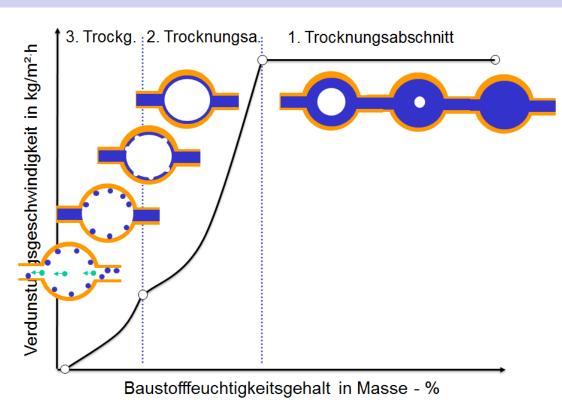
### Wasserkapazität

■Kommt ein Baustoff mit Wasser in Berührung, so können die Kapillaren auf Grund der ihnen eigenen Kapillarkräfte Wasser aufsaugen. Der Baustoff nimmt nach ausreichend langer Zeit einen Feuchtigkeitsgehalt an, der als freie Wassersättigung oder als Wasserkapazität.



### **Maximaler Wassergehalt**

- Lagert man eine Baustoffprobe sehr lange unter Wasser, erzeugt man über der Wasseroberfläche einen Unterdruck oder erhitzt man bei der Wasserlagerung das Wasserbad auf Siedetemperatur, so kann man die verbleibende Luft austreiben und der Baustoff nimmt den Sättigungsfeuchtigkeitsgehalt, den sogenannten maximalen Wassergehalt an.
- ■Dieser Wert entspricht in etwa dem gesamten freien , d.h. von außen zugänglichen Porenraum eines Baustoffs.

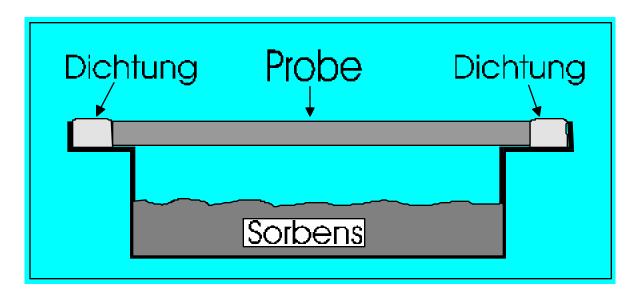



### Kritischer Feuchtigkeitsgehalt

- Eine weitere wichtige Größe ist der sogenannte kritische Feuchtigkeitsgehalt.
- ■Es sind durchgehende, Wasser gefüllte Kapillaren vorhanden.
- •Unter diesem Feuchtegehalt ist kein kapillarer Feuchtetransport möglich.
- Ein Baustoff mit einem kleinen kritischen Feuchtigkeitsgehalt trocknet schneller aus als ein Baustoff mit einem hohen kritischen Feuchtigkeitsgehalt.

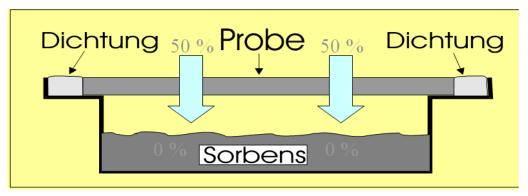


# Trocknungsverlauf eines Baustoffs





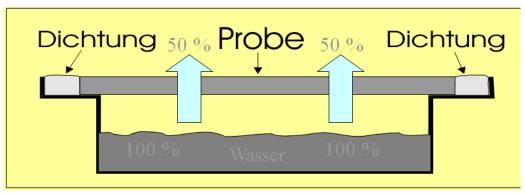

| Material          | Maximaler<br>Wassergehalt in | Wasser-<br>kapazität | Kritischer<br>Wassergehalt in |
|-------------------|------------------------------|----------------------|-------------------------------|
| iviateriai        | V-%                          | in V-%               | V-%                           |
| Ziegel            | 42                           | 30                   | 5                             |
| Porenbeton        | 73                           | 34                   | 18                            |
| Kalksandstein     | 25                           | 21                   | 14                            |
| Kalkzementputz    | 30                           | 20                   | 12                            |
| Beton(Kies)       | 14                           | 11                   | 7                             |
| Beton(calcitisch) | 19                           | 13                   | 9                             |




### Bestimmung der Wasserdampfdurchlässigkeit von Dämmstoffen






### **Dry cup - Methode**



|                                            | Keramik  | Klinker | Fliesen   |
|--------------------------------------------|----------|---------|-----------|
| Diffusions-<br>widerstands-<br>koeffizient | 50100200 | 530     | 502003000 |

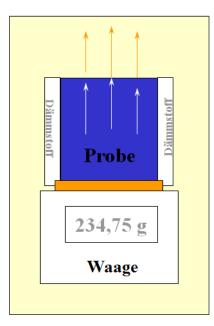


### Wet cup - Methode

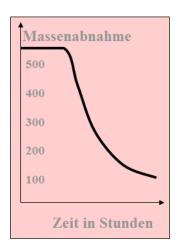


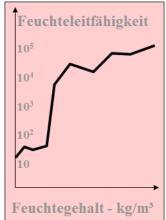
|                                            | Keramik  | Klinker | Fliesen   |
|--------------------------------------------|----------|---------|-----------|
| Diffusions-<br>widerstands-<br>koeffizient | 50100200 | 530     | 502003000 |




| Baustoff        | Diffusions-<br>widerstandszahl | Übliche<br>Schichtstärke | Äquivalente<br>Luftschichtdicke |
|-----------------|--------------------------------|--------------------------|---------------------------------|
| Aluminiumfolie  | 2000000                        | 0,0002 m                 | 400 m                           |
| Öllackfilm      | 23000                          | 0,00015 m                | 3,45 m                          |
| Dispersionsfilm | 6000                           | 0,0002 m                 | 1,2 m                           |
| Klinker         | 420                            | 0,25 m                   | 100,8 m                         |
| Kunstharzputz   | 140                            | 0,002 m                  | 0,28 m                          |
| Holz            | 30                             | 0,025                    | 0,75 m                          |
| Beton           | 30                             | 0,15 m                   | 4,5 m                           |
| Polystyrol      | 30                             | 0,06 m                   | 1,8 m                           |
| Zementputz      | 20                             | 0,025 m                  | 0,5 m                           |
| Kalkputz        | 11                             | 0,025 m                  | 0,275 m                         |
| Ziegel          | 9                              | 0,25 m                   | 2,16 m                          |
| Porenbeton      | 6                              | 0,30 m                   | 1,8 m                           |
| Bimsbeton       | 5                              | 0,24 m                   | 1,2 m                           |
| Mineralwolle    | 1                              | 0,06 m                   | 0,06 m                          |




| Diffusionswiderstandszahl von Sandsteinen                  |      |  |
|------------------------------------------------------------|------|--|
| Sandstein                                                  | -    |  |
| Eichenbühler Roter Mainsandstein                           | 45   |  |
| - senkrecht zur Schichtung                                 | 47   |  |
|                                                            | 49   |  |
| Eichenbühler Roter Mainsandstein – parallel zur Schichtung | 30   |  |
|                                                            | 31   |  |
|                                                            | 31   |  |
| Bucher Sandstein                                           | 11,8 |  |
| - senkrecht zur Schichtung                                 | 11,8 |  |
|                                                            | 12,0 |  |
| Bucher Sandstein                                           | 8,9  |  |
| - parallel zur Schichtung                                  | 13,5 |  |
|                                                            | 9,2  |  |




#### Wasserverdunstung durch Diffusion und kapillaren Wassertransport



$$\frac{\text{Masse (H}_2\text{O})}{\text{Fläche}} = F(u, t)$$







#### Verdunstung von Feuchtigkeit an Oberflächen poröser Stoffe

| Übergangs-<br>bedingung | Wasserdampf-<br>übergangskoeffizient<br>in g / dyn ˈs | Verdunstungmenge<br>in g/cm²*s<br>20 °C / 100 % bis<br>20 °C / 50 % |
|-------------------------|-------------------------------------------------------|---------------------------------------------------------------------|
| Innenräume              | 0,30 x 10 <sup>-6</sup>                               | 2,9 x 10 <sup>-6</sup>                                              |
| Windstille im Freien    | 0,92 x 10 <sup>-6</sup>                               | 8,7 x 10 <sup>-6</sup>                                              |
| Wind von 5 m/s          | 1,75 x 10 <sup>-6</sup>                               | 17,0 x 10 <sup>-6</sup>                                             |
| Wind von 25 m/s         | 7,9 x 10 <sup>-6</sup>                                | 70,0 x 10 <sup>-6</sup>                                             |



#### Übersicht

- •Allgemeines
- ■Porenstruktur von Baustoffen und ihre Eigenschaften
- Verwitterungsprozesse
- Kondensationsprozesse
- Befeuchtungsprozesse
- Deformationsprozesse



#### Verwitterungsprozesse

- Mechanische Verwitterung
- Chemische Verwitterung
- Metallische Verwitterung
- ■Biologische Verwitterung



#### **Mechanische Verwitterung**

- ■Frost Tau Wechsel
- Kristallisation von Salzen
- Hydratationsdruck
- ■Spannungen durch thermisches und hygrisches Dehnen
- Auswaschen und Ausspülen



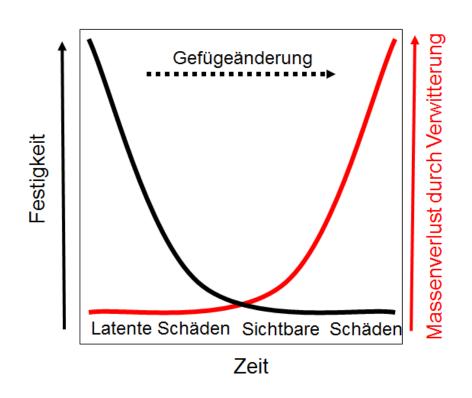
#### **Chemische Verwitterung**

- Umwandlung von wasserunlöslichen Salzen in wasserlösliche durch Feuchte und Fremdstoffe
- Schichtenbildung durch chemische Prozesse



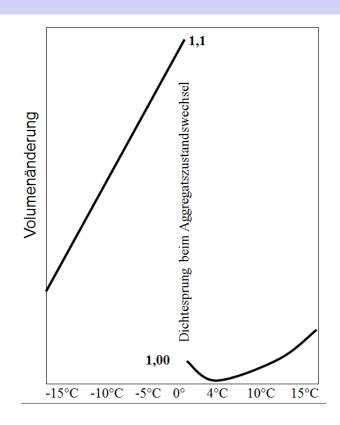
#### **Metallische Verwitterung**

- Carbonatisierung
- elektrochemische Prozesse durch minimale Materialunterschiede,
   Umgebungsbedingungen und Belüftungsverhältnisse




#### **Biologische Verwitterung**

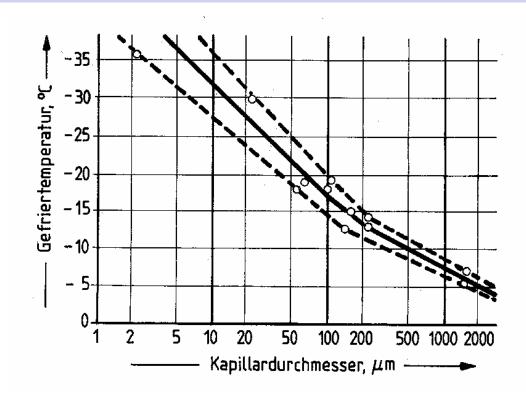
- Veränderung des Feuchtehaushaltes durch Bewuchs und Besiedelung
- Wurzeldruck und Schadstoffeintrag durch pflanzliche und tierische Ausscheidungen
- Stoffzersetzung und -umwandlung durch Algen, Pilze, und Bakterien




Ablauf einer Gesteinsschädigung im Verlauf von Jahrzehnten und Jahrhunderten

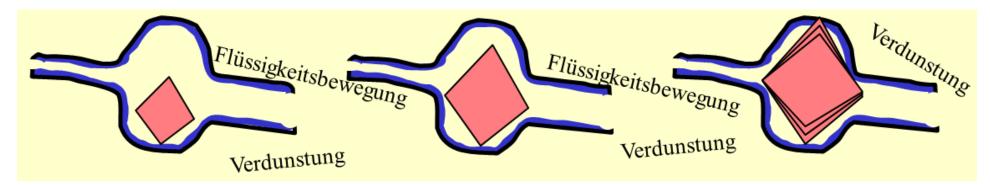





#### Volumenänderung bei einem Frost-Tau-Wechsel






#### Frost-Tau-Wechsel

Abhängigkeit des Gefrierpunktes vom Porendurchmesser





#### Kristallwachstum und Entwicklung von Kristallisationsdruck





#### Salzausblühungen





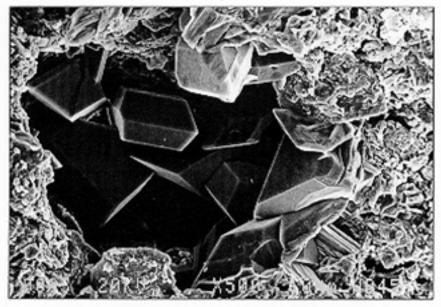
| Λ.    | 100 000 | *** |
|-------|---------|-----|
| A 111 | hvd     |     |
| 4     | ,       |     |
|       |         |     |

Dodekahydrat

**Epsomit** 

Gips

Halit


Heptahydrit

Hexahydrit

Kieserit

Natron

Thermonatrit



REM-Aufnahme des Gipskristallwachstums in der Pore eines bewitterten Ziegelsteins

8,0 N/mm<sup>2</sup> (20°C)

12,5 N/mm<sup>2</sup> ( 20°C )

33,4 N/mm<sup>2</sup> ( 20°C )

65,4 N/mm2 ( 20°C )

11,9 N/mm<sup>2</sup> ( 20°C )

14,1 N/mm<sup>2</sup> ( 20°C )

32,4 N/mm<sup>2</sup> ( 20°C )

9,2 N/mm<sup>2</sup> ( 20°C )

33,3 N/mm<sup>2</sup> ( 20°C )



#### wichtige bauschädliche Salze

| Salzgruppe | Chem. Formel                                                                              | Name            | Löslichkeit<br>in g/l | Kristallisations-<br>druck in N/mm <sup>2</sup> |
|------------|-------------------------------------------------------------------------------------------|-----------------|-----------------------|-------------------------------------------------|
|            | MgSO <sub>4</sub> * 7 H <sub>2</sub> O                                                    | Bittersalz      | 710                   | 41,5                                            |
| Sulfate    | CaSO <sub>4</sub> * 2 H2O                                                                 | Gips            | 2,4                   | 111                                             |
|            | Na <sub>2</sub> SO <sub>4</sub> *10 H <sub>2</sub> O                                      | Glaubersalz     | 110                   | 27,7                                            |
|            | 3CaO*Al <sub>2</sub> O <sub>3</sub> * 3CaSO <sub>4</sub> *32H <sub>2</sub> O              | Ettringit       |                       |                                                 |
|            | Mg(NO <sub>3</sub> ) <sub>2</sub> * 6 H <sub>2</sub> O                                    | Magnesiumnitrat | 1250                  |                                                 |
| Nitrate    | Ca(NO <sub>3</sub> ) <sub>2</sub> * 4 H <sub>2</sub> O                                    | Calciumnitrat   | 2660                  |                                                 |
|            | 5Ca(NO <sub>3</sub> ) <sub>2</sub> * 4NH <sub>4</sub> NO <sub>3</sub> :10H <sub>2</sub> O | Kalksalpeter    | 266                   |                                                 |
| Chloride   | CaCl <sub>2</sub> * 10 H <sub>2</sub> O                                                   | Calciumchlorid  | 750                   |                                                 |
|            | NaCl                                                                                      | Kochsalz        | 360                   | 65,4                                            |
|            | Na <sub>2</sub> CO <sub>3</sub> *10H <sub>2</sub> O                                       | Soda            | 210                   | 30,8                                            |
| Carbonate  | K <sub>2</sub> CO <sub>3</sub>                                                            | Pottasche       | 1120                  |                                                 |
|            | CaCO <sub>3</sub>                                                                         | Kalk            | 0,015                 |                                                 |



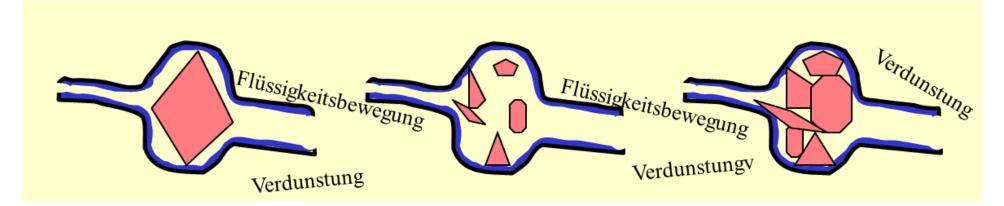
#### Löslichkeit von Salzen in Wasser

| Löslichkeit von Salzen in Wasser                       |                             |                      |                      |  |  |
|--------------------------------------------------------|-----------------------------|----------------------|----------------------|--|--|
|                                                        |                             | 100 ml Wasser (kalt) | 100 ml Wasser (warm) |  |  |
| CaCO <sub>3</sub>                                      | Calciumcarbonat,Kalk        | 0,0015 g             | 0,0019 g             |  |  |
| CaCl <sub>2</sub>                                      | Calciumchlorid              | 75 g                 | 159 g                |  |  |
| Ca(NO <sub>3</sub> ) <sub>2</sub> * 4 H <sub>2</sub> O | Calciumnitrat, Salpeter     | 266 g                | 660 g                |  |  |
| $Ca(NO_3)_2$                                           | Calciumnitrat               | 121 g                | 376 g                |  |  |
| CaSO <sub>4</sub> * 2 H <sub>2</sub> O                 | Calciumsulfat, Gips         | 0,24 g               | 0,22 g               |  |  |
| CaF <sub>2</sub>                                       | Calciumfluorid              | 0,002 g              | 0,002 g              |  |  |
| K2CO <sub>3</sub>                                      | Kaliumcarbonat, Pottasche   | 112 g                | 156 g                |  |  |
| K2CO3 * 2 H2O                                          | Kaliumcarbonat, Dihydrat    | 147 g                | 331 g                |  |  |
| 2 K <sub>2</sub> CO <sub>3</sub> * 3 H <sub>2</sub> O  | Kaliumcarbonat, Trihydrat   | 129 g                | 268 g                |  |  |
| MgSO <sub>4</sub> * 7 H <sub>2</sub> O                 | Magnesiumsulfat, Bittersalz | 71 g                 | 91 g                 |  |  |
| MgCl <sub>2</sub> * 6 H <sub>2</sub> O                 | Magnesiumchlorid            | 167 g                | 367 g                |  |  |
| Mg(NO <sub>3</sub> ) <sub>2</sub> * 6 H <sub>2</sub> O | Magnesiumnitrat             | 125 g                |                      |  |  |
| NaSO <sub>4</sub> * 10 H <sub>2</sub> O                | Natriumsulfat, Glaubersalz  | 11 g                 | 92 g                 |  |  |
| NaCO <sub>3</sub> * 10 H <sub>2</sub> O                | Natriumcarbonat, Soda       | 21 g                 | 420 g                |  |  |
| NaCl                                                   | Natriumchlorid, Kochsalz    | 96 g                 | 39 g                 |  |  |
| NaF                                                    | Natriumfluorid              | 4 g                  | -                    |  |  |
| BaSO <sub>4</sub>                                      | Bariumsulfat                | 0,0002 g             | 0,0004 g             |  |  |
| PbSO <sub>4</sub>                                      | Bleisulfat                  | 0,004 g              | 0,005 g              |  |  |
| PbCl,                                                  | Bleichlorid                 | 1 g                  | 3 g                  |  |  |



# Löslichkeit von Salzen in Wasser






#### Kristallisationsdruck der wichtigsten bauschädlichen Salze

| Kristallisat             | Kristallisationsdruck der wichtigsten bauschädlichen Salze |                                        |       |                                        |       |  |
|--------------------------|------------------------------------------------------------|----------------------------------------|-------|----------------------------------------|-------|--|
| Chemische<br>bezeichnung | Mol-<br>volumen                                            | Kristallisationsdruc<br>k bei C/Cs = 2 |       | Kristallisationsdructure bei C/CS = 10 |       |  |
|                          |                                                            | 0 ° C                                  | 50 °C | 0 °C                                   | 50 °C |  |
| CaSO4*1/2*H2O            | 46                                                         | 33,5                                   | 39,8  | 112,0                                  | 132,5 |  |
| CaSO4*2*H2O              | 55                                                         | 28,2                                   | 33,4  | 93,8                                   | 111,0 |  |
| MgSO4*7*H2O              | 147                                                        | 10,5                                   | 12,5  | 35,0                                   | 41,5  |  |
| MgSO4*6*H2O              | 130                                                        | 11,8                                   | 14,1  | 39,5                                   | 49,5  |  |
| MgSO4*1*H2O              | 57                                                         | 27,2                                   | 32,4  | 91,0                                   | 107,9 |  |
| NaSO4*10*H2O             | 220                                                        | 7,2                                    | 8,3   | 23,4                                   | 27,7  |  |
| NaSO4                    | 53                                                         | 29,2                                   | 34,5  | 97,0                                   | 115,0 |  |
| NaCl                     | 28                                                         | 55,4                                   | 65,4  | 184,5                                  | 219,0 |  |
| Na2CO3*10*H2O            | 199                                                        | 7,8                                    | 9,2   | 25,9                                   | 30,8  |  |
| Na2CO3*7*H2O             | 154                                                        | 10,0                                   | 11,9  | 33,4                                   | 36,5  |  |
| Na2CO3*1*H2O             | 55                                                         | 28,0                                   | 33,3  | 93,5                                   | 110,9 |  |



#### Kristallwachstum und Entwicklung von Hydratationsdruck



Kristallbildung unter Einbau von Kristallwasser Dehydratation in einer Trocknungsphase

Hydratationsdruck durch H2O-Anlagerung bei Befeuchtung



#### Hydratationsdrücke

| Salz            | 50 %<br>Luftfeuchtigkeit | 70%<br>Luftfeuchtigkeit | 100%<br>Luftfeuchtigkeit |
|-----------------|--------------------------|-------------------------|--------------------------|
| Cina            |                          | -                       |                          |
| Gips            | 57,5 N/mm²               | 114,5N /mm²             | 175,5 N/mm²              |
| Magnesiumsulfat | 1,9 N/mm²                | 6,8 N/mm²               | 11,7 N/mm²               |
| Natriumcarbonat | 0 N/mm²                  | 28,4 N/mm²              | 61,1 N/mm²               |



#### **Hydratationsdrücke - Calciumsulfat**

| Salz – Calciumsulfat<br>CaSO4*1/2H2O→CaSO4*2H2O | 0 °C                    | 20 °C                   | 60 °C      |
|-------------------------------------------------|-------------------------|-------------------------|------------|
| 100 %                                           | 219,0 N/mm <sup>2</sup> | 175,5 N/mm <sup>2</sup> | 92,6 N/mm² |
| 70 %                                            | 160,0 N/mm <sup>2</sup> | 114,5 N/mm²             | 25,4 N/mm² |
| 50 %                                            | 107,2 N/mm²             | 57,5 N/mm²              | 0,0 N/mm²  |



#### **Hydratationsdrücke - Magnesiumsulfat**

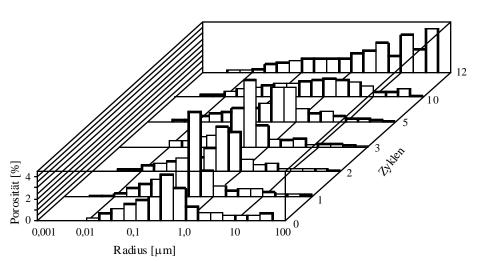
| Salz – Magnesiumsulfat<br>MgSO4*6*H2O→MgSO4*7*H2O | 0 °C       | 20 °C      | 60 °C     |
|---------------------------------------------------|------------|------------|-----------|
| 100 %                                             | 14,6 N/mm² | 11,7 N/mm² | 9,2 N/mm² |
| 70 %                                              | 9,7 N/mm²  | 6,8 N/mm²  | 4,0 N/mm² |
| 50 %                                              | 5,0 N/mm²  | 1,9 N/mm²  | 0,0 N/mm² |



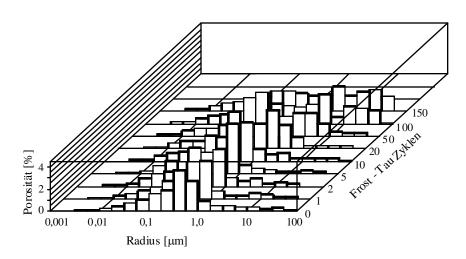
### **Hydratationsdrücke - Natriumcarbonat**

| Salz – Natriumcarbonat<br>Na2CO3*H2O→Na2CO3*7*H2O | 0 °C       | 20 °C      | 60 °C                  |
|---------------------------------------------------|------------|------------|------------------------|
| 100 %                                             | 93,8 N/mm² | 61,1 N/mm² | 43,0 N/mm <sup>2</sup> |
| 70 %                                              | 63,7 N/mm² | 28,4 N/mm² | 9,4 N/mm²              |
| 50 %                                              | 24,3 N/mm² | 0,0 N/mm²  | 0,0 N/mm²              |




### Schädigung von Mauerwerk durch Salze

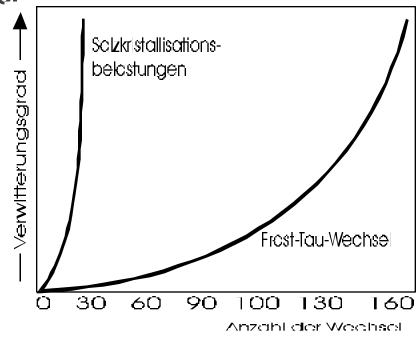





#### Salzkristallisation vs. Frost-Tau-Wechsel

### Porenbildung während eines Salzkristallisationstests




### Porenbildung während eines Frost-Tau-Wechsel-Tests





#### Salzkristallisation vs. Frost-Tau-Wechsel

- Veränderungen der Porenstruktur, Gefügelockerungen, Absanden, Abplatzen





#### Schadenswirkung von Salzen

| Salzart              | Salzkonzentrationen [M-%]      |                                                                                           |                                                                         |                                                        |  |
|----------------------|--------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------|--|
| Sulfate              | 0 - 0,030                      | 0,030 - 0,08                                                                              | 0,08 - 0,25                                                             | 0,25 - 0,8                                             |  |
| Nitrate              | 0 - 0,018                      | 0,018 - 0,05                                                                              | 0,05 - 0,16                                                             | 0,16 - 0,5                                             |  |
| Chloride 0 - 0,010   |                                | 0,010 - 0,03                                                                              | 0,03 - 0,09                                                             | 0,09 - 0,3                                             |  |
| Schadens-<br>wirkung | keine<br>Beeinträchti-<br>gung | keine akute<br>Beeinträchtigung,<br>aber bei<br>baulichen<br>Maßnahmen<br>berücksichtigen | Erhöhte<br>Hygroskopische<br>Wasseraufnahme,<br>Baustoffzer-<br>Mürbung | Starke<br>Ausblühungen<br>Dauerhafte<br>Durchfeuchtung |  |



#### **Bewertung von Salzen**

| Salzart          | Gering<br>[M-%] | Mittel<br>[M-%] | Hoch<br>[M-%] |
|------------------|-----------------|-----------------|---------------|
| Gesamtsalzgehalt | < 0,10          | 0,10 - 0,25     | > 0,25        |
| Sulfat           | < 0,10          | 0,10 - 0,25     | > 0,25        |
| Nitrat           | < 0,05          | 0,05 - 0,15     | > 0,15        |
| Chlorid          | < 0,03          | 0,03 - 0,10     | > 0,10        |

Orientierungshilfe für die Bewertung oberflächennaher Proben bei 3 cm Bohrtiefe



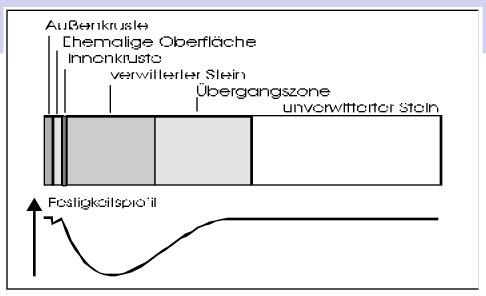
#### **Bewertung von Salzen**

| Chloride <sup>1</sup>  | < 0,2 M-%                                             | 0,2 - 0,5 M-%                                                                                                                                             | > 0,5 M-%                                                                                                                                 |
|------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Nitrate                | < 0,1 M-%                                             | 0,1 - 0,3 M-%                                                                                                                                             | > 0,3 M-%                                                                                                                                 |
| Sulfate <sup>2</sup>   | < 0,5 M-%                                             | 0,5 - 1,5 M-%                                                                                                                                             | > 1,5 M-%                                                                                                                                 |
| Bewertung <sup>3</sup> | Belastung gering<br>Maßnahmen im<br>Ausnahmefall erf. | Belastung mittel Weitergehende Untersuchungen zum Gesamtsalzgehalt (Salzverbindung, Kationenbestimmung) erforderlich Maßnahmen im Einzelfall erforderlich | Belastung hoch Weitergehende Untersuchungen zum Gesamtsalzgehalt (Salzverbindung, Kationenbestimmung) erforderlich Maßnahmen erforderlich |



#### Bewertung von Salzen

Bewertung der schadensverursachenden Wirkung verschiedener Salzionen in Mauerwerkskörpern nach [Wta99]


- Bei tragwerksichernden Maßnahmen, wie dem Einbau von Ankern/Nadeln, ist bei Chloridbelastungen > 0,1 M-% auf die Auswahl besonderer Stahlgüten und speziell rezeptierter Verpreß-/Verfüllmörtel zu achten
- 2 Beurteilung bezogen auf leicht lösliche Sulfate; besonders zu bewerten sind sulfathaltige Baustoffe
- Für die Entscheidung über das Erfordernis von Maßnahmen sind nicht allein die Ergebnisse der Salzuntersuchungen ausschlagebend Für einfache Rückschlüsse zum Gesamtsalzgehalt ist der ermittelte höchste Gehalt von

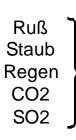
Salzionen, unabhängig ob Chlorid, Nitrat oder Sulfat und die Bewertung o.a. Tabelle

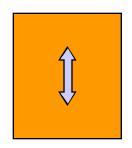
maßgebend

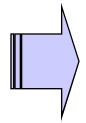


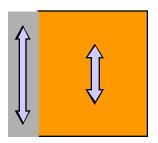
## Entstehen von Verwitterungsprofilen







#### Verwitterungsprofil

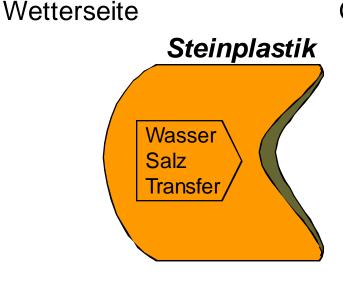

Wärme- und Feuchtigkeitsdehnung homogen und einheitlich

Wärme- und Feuchtigkeitsdehnung unterschiedlich










Krustenbildung: Staub- und Rußteilchen werden an die Gesteinsschicht angelagert und durch Kristallbildung (Kalzit, Gips) fixiert. Durch die dadurch bedingte Verdichtung und chemische Veränderung entsteht eine Oberflächenschicht mit abweichenden Eigenschaften im Vergleich zum homogenen Ausgangsmaterial.

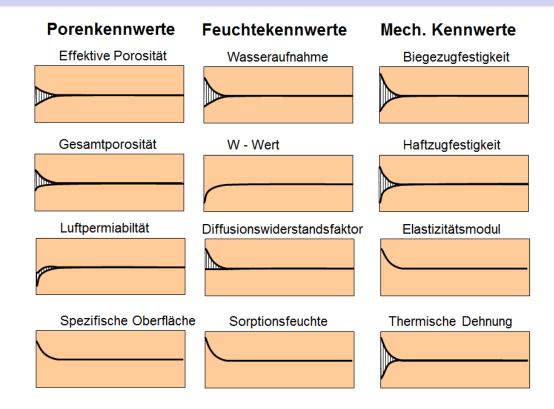


#### Darstellung einer Rückseitenverwitterung

Sonne Ruß Staub Regen CO<sub>2</sub> SO2



Geschützte Seite


Schatten Benetzung Staubablagerung Krustenbildung



#### Rückseitenverwitterung

- •Auf der Wetterseite werden Staub und Schmutz durch häufiges Beregnen ab- und ausgewaschen, die Trocknung erfolgt rasch und das Temperatur und Dampfdruckgefälle ist zur geschützten Seite gerichtet.
- An der geschützten Seite kann sich Staub ablagern, es herrscht kein Abwascheffekt und es können sich Krusten bilden.
- Durch den Wassertransport werden gelöste Stoffe in die Kruste transportiert. Der erhöhte Salz- und Wassergehalt führt zur Steinschädigung.







# Übersicht

- •Allgemeines
- ■Porenstruktur von Baustoffen und ihre Eigenschafte
- Verwitterungsprozesse
- Kondensationsprozesse
- Befeuchtungsprozesse
- Deformationsprozesse



# Kondensationsprozesse

- Einflussgrößen
- Oberflächenkondensation und erhöhte Luftfeuchtigkeit
- Oberflächentemperaturen
- Wärmetransportkennwerte
- Wärmebrücken
- Instationäre Kondensationsprozesse
- Kernkondensation



# Kondensationsprozesse

Bauphysikalische Beschreibung von Kondensationserscheinungen und Zuständen mit erhöhter Luftfeuchtigkeit



## Oberflächenkondensation und erhöhte Luftfeuchtigkeit

- Zur Schimmelpilzbildung kommt es, wenn sich auf inneren Oberflächen Kondenswasser bildet.
- Es kann aber ebenfalls bereits bei höheren Luftfeuchtigkeiten im Bereich der Wandoberfläche zur Schimmelpilzbildung kommen.
- Eine genaue Grenze ist nicht anzugeben, da verschiedene Zustände und deren Häufigkeit eine Rolle spielen.



# Einflussgrößen

- Luftfeuchtigkeit (absolute, relative, Wasserdampfpartialdruck, Taupunkttemperatur
- ■Wärmetransportgrößen (Wärmeleitfähigkeit, Oberflächentemperaturen, Wärmebrücken)
- Feuchteproduktion (Arbeiten, Wohnen, Schlafen, Zimmerpflanzen, feuchte Bauteile, Möblierung)



# Beschreibung der Luftfeuchtigkeit in der Bauphysik

- ■Die absolute Luftfeuchtigkeit in Gramm Wasserdampf pro Kubikmeter Luft f in g / m³
- Der Wasserdampfpartialdruck in Pascal p in Pa
- Die relative Luftfeuchtigkeit in Prozent

$$\varphi = \frac{f}{f_{S\ddot{a}ttigung}} \cdot 100\% , \quad \varphi = \frac{p}{p_{S\ddot{a}ttigung}} \cdot 100\%$$



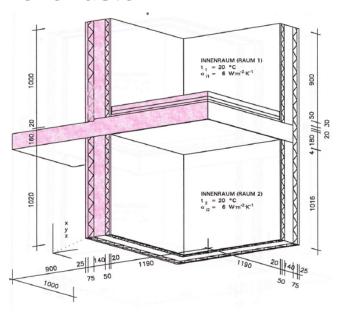
# Taupunkttemperatur für verschiedene Luftzustände

$$t_{Taupkt} = \left(109,8^{\circ}C + t_{i}\right) \cdot \left(\frac{\varphi_{i}}{100\%}\right)^{0,1247} - 109,8^{\circ}C$$



## Berechnung von Oberflächentemperaturen

$$\frac{\Delta t}{t_i - t_a} = \frac{R}{R_T} \quad , \quad \Delta t = \frac{R}{R_T} \cdot \left( t_i - t_a \right)$$

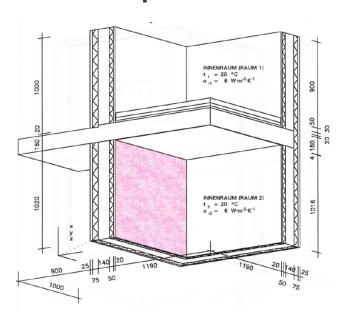

Die Oberflächentemperatur auf inneren Bauteiloberflächen berechnet sich nach folgender Gleichung:

$$t_{oi} = t_i - \frac{R_{si}}{R_T} \cdot (t_i - t_a), \ t_{oi} = t_i - \frac{0.13 \cdot \frac{m^2 \cdot K}{W}}{R_T} \cdot (t_i - t_a),$$

$$t_{oi} = t_i - U \cdot 0.13 \frac{m^2 \cdot K}{W} \cdot (t_i - t_a).$$



## Wärmeverluste




# Auswirkungen auf

- Heizlast
- Baukosten
- Heizwärmebedarf
- Schadstoffemissionen
- Betriebskosten



## Oberflächentemperaturen



# Auswirkungen auf

- Gesundheit (Schimmelbildung)
- Behaglichkeit
- Lebensdauer
- Betriebskosten (bei Sanierungserfordernis)



# Wärmetransportmechanismen

#### Wärmestrahlung

Wärmetransport durch (langwellige) elektromagnetische Strahlung ohne Beteiligung eines Mediums

#### Konvektion

Wärmetransport in Verbindung mit Massentransport (Wärmeträgermedium z. B. Wasser, Luft, ...)

#### Wärmeleitung

Wärmetransport als Ausgleichsmechanismus in einem Medium (Festkörper, Flüssigkeit, Gas)



## Wärmestrahlung

Jeder Körper strahlt in Abhängigkeit von seiner Temperatur Wärme ab. Der Wärmetransport durch Wärmestrahlung erfolgt ohne Vermittlung eines materiellen Mediums.

#### Stefan-Boltzmann'sches Gesetz

Die Gesamtemission des schwarzen Körpers ist proportional zur

4. Potenz der absoluten Temperatur der Oberfläche.

Themenkreise: Strahlungsfeld im Raum (Behaglichkeit),

Wärmeübergang an den Oberflächen,

Flächenheizsysteme, Wärmedurchgang durch Hohlräume, ...



### Konvektion

Mit der Strömung eines Gases oder einer Flüssigkeit wird Masse transportiert. Gleichzeitig wird auch die aufgrund der Temperatur im bewegten Medium enthaltene Wärme transportiert.

Themenkreise: Lüftungswärmeverluste,

Wärmeübergang an den Oberflächen,

Wärmetransport mit Heiz- und Kühlmedien,

Wärmedurchgang durch Hohlräume, ..



# Wärmeleitung

In einem Medium fließt Wärme immer von Orten höherer Temperatur zu Orten niedrigerer Temperatur (**Ausgleichsvorgang**).

#### Fourier'scher Wärmestromansatz

Die Wärmestromdichte – d. h. der flächenbezogene Wärmestrom – ist proportional zum Temperaturgefälle.

Der Proportionalitätsfaktor ist die Wärmeleitfähigkeit.

Themenkreise: Wärmeströme durch Baukonstruktionen,

Transmissionswärmeverluste, Temperaturverteilungen,

Oberflächentemperaturen, Kondensationsrisiko, ...



## Oberflächentemperaturen

Für jeden Punkt jeder Oberfläche einer Baukonstruktion kann ein **Satz von Temperaturgewichtungsfaktoren** angegeben werden. Die Oberflächentemperatur am Punkt (x,y,z) errechnet sich gemäß

$$\Theta_s^*(x,y,z) = \sum_j g_j(x,y,z) \cdot \Theta_j$$

Nach Norm (national: **ONorm B8110-2**; international **EN ISO 10211**) sind u. a. als Ergebnis einer Wärmebrückenberechnung die Sätze von Temperaturgewichtungsfaktoren für die Punkte tiefster Oberflächentemperatur für alle Innenräume anzugeben.

Anmerkung: Für den stationären Fall gilt:  $\sum_{j} g_{j} = 1$ 



### Kondensationsrisiko

Bei bekannter Oberflächentemperatur kann unmittelbar  $\Theta$  angegeben werden, bei welcher relativen Feuchtigkeit der Raumluft es zur Bildung von Kondensat kommen wird.

Jener Wert der relativen Feuchtigkeit der Raumluft, bei dessen Überschreitung es zur Kondensatbildung kommt, wird **Grenzfeuchtigkeit** genannt.

In der **ÖNorm B8110-2:2003** wird ein "Norm-Innenraum-Klima" definiert und gefordert, dass unter diesen Verhältnissen es an keiner Stelle der inneren Oberflächen zu Kondensatbildung kommen darf.

Zudem wird ein weiteres Kriterium zur "Hintanhaltung von Schimmelbildung" Eingeführt.



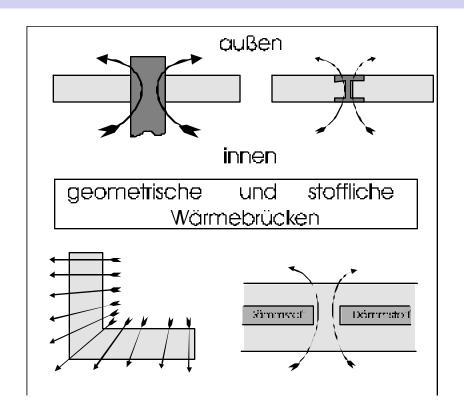
# Beschreibung von Wärmeleitungsvorgängen

- Eindimensionales Modell
- Zweidimensionales Modell
- Dreidimensionales Modell



### Das eindimensionale Modell

- Von eindimensionaler Wärmeleitung wird dann gesprochen, wenn die Wärmeleitungsvorgänge mit einer Ortskoordinate allein beschreibbar sind.
- Ein Beispiel für eindimensionale Wärmeleitung ist der Wärmedurchgang durch einen plattenförmigen, homogen geschichteten Bauteil (Wand, Fußboden, Decke, ...).
- Das Verwenden des eindimensionalen thermischen Modells hat den Vorteil, dass Ergebnisse per Handrechnung erhalten werden können.




### Das zweidimensionale Modell

- Von zweidimensionaler Wärmeleitung wird dann gesprochen, wenn zur Beschreibung der Wärmeleitungsvorgänge zwei Ortskoordinaten notwendig sind.
- Berechnet werden Wärmeströme und Temperaturverteilungen für jeweils eine
   Ebene.
- In Richtung der dritten Koordinate (senkrecht zur betrachteten Ebene) bleibt die Temperaturverteilung unverändert; entlang dieser Koordinatenachse fließt kein Wärmestrom.
- Die Berechnungen können nur numerisch unter Verwendung eines Wärmebrückenprogramms durchgeführt werden



## Wärmebrücken



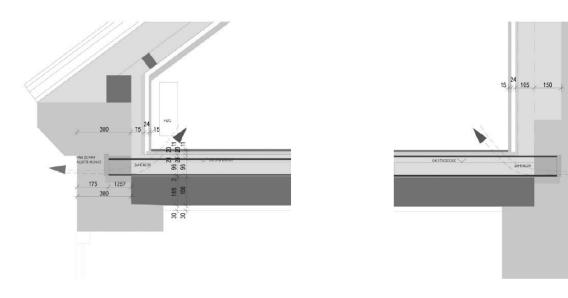
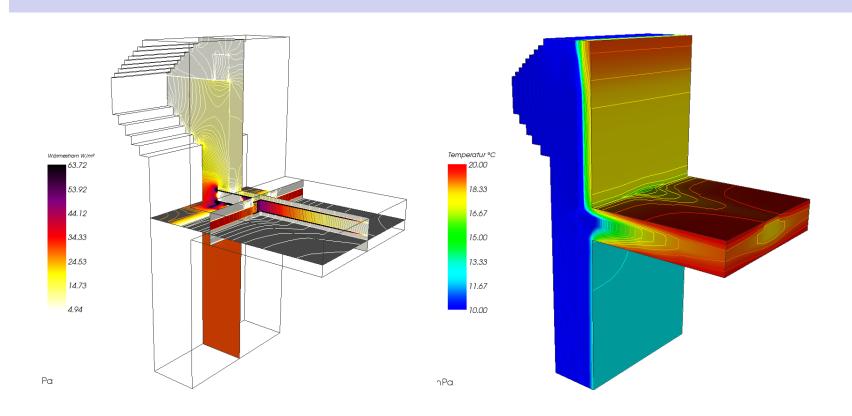


### Das dreidimensionale Modell

- Von dreidimensionaler Wärmeleitung wird dann gesprochen, wenn zur Beschreibung der Wärmeleitungsvorgänge alle drei Ortskoordinaten notwendig sind.
- Die Berechnungen können nur numerisch unter Verwendung eines Wärmebrückenprogramms durchgeführt werden



## **Anschlussdetail**

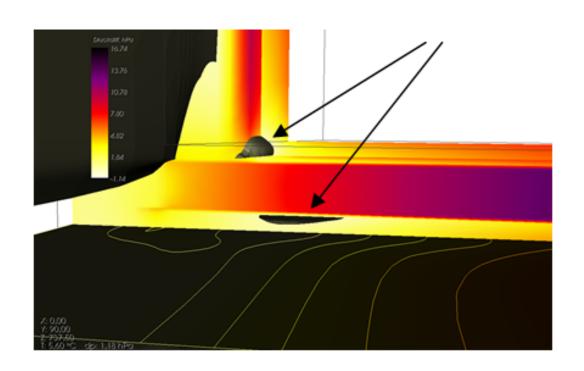
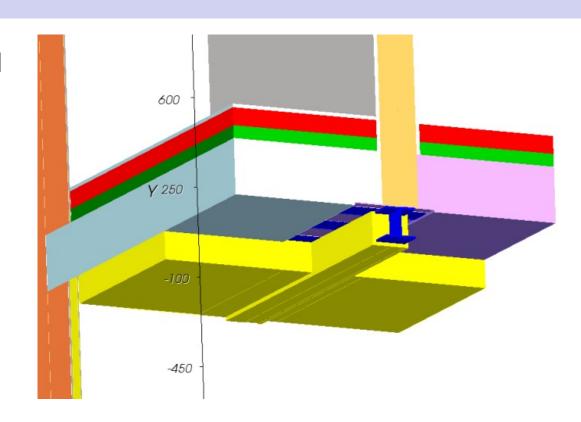


Abbildung 10: Detail C (o.M.)

Abbildung 11: Detail D (o.M.)

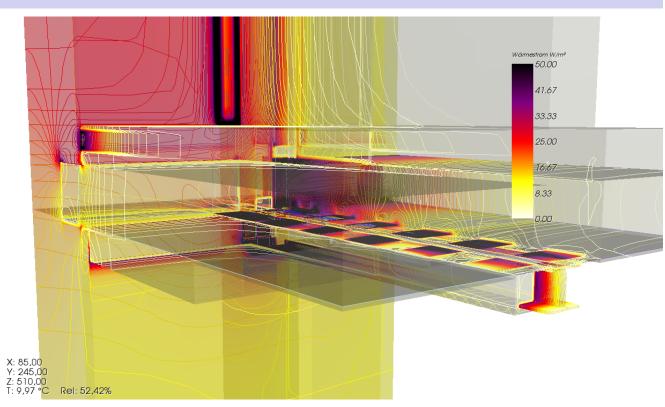









Kondensatbildung im Bereich Fußboden zu aufgehender Innendämmkonstruktion, sowie Kondensatbildung zwischen Stahlträger und Dippelbaumdecke




# **Anschlussdetail**





# **Anschlussdetail**





## Berechnung von Wärmetransportkennwerten

$$R = \frac{1}{\alpha_i} + \frac{s_1}{\lambda_1} + \frac{s_2}{\lambda_2} + \frac{s_3}{\lambda_3} + \frac{1}{\alpha_e}$$

$$\frac{1}{U} = R_T = \frac{1}{\alpha_i} + R + \frac{1}{\alpha_e}$$

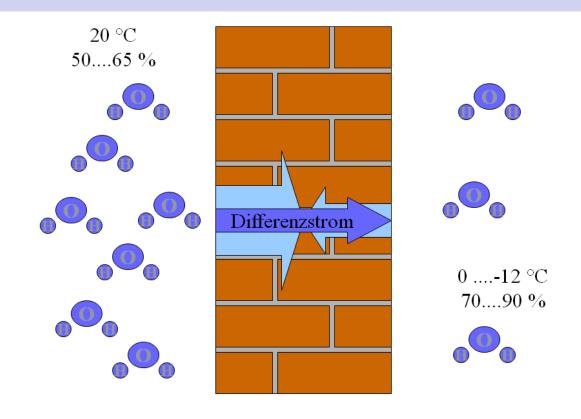
$$U = \frac{1}{R_T} = \frac{1}{\frac{1}{\alpha_i} + R + \frac{1}{\alpha_e}}$$

$$\lambda_j$$
 Wärmeleitfähigkeit

$$\frac{1}{\alpha_e} \frac{1}{\alpha_i}$$
 Übergangswiderstand



### Kernkondensation


- Kernkondensat ist Kondenswasser, das in einem Bauteil auftritt.
- ■Die Wasserdampfdiffusion durch einen porösen Körper ist die Ursache für diese Art der Feuchtigkeitsanreicherung in Bauteilen.
- Der Transport des Wasserdampfes erfolgt vom höheren zum niedrigeren Wasserdampfteildruck.



### Kernkondensation

- Im Winter treten durch die Raumbeheizung relativ große Partialdruckdifferenzen zwischen der Innen- und Außenluft auf.
- Zur Kondensation von Wasserdampf kommt es jedoch nur, wenn der Wasserdampfteildruck an einer Stelle im Bauteil den Wasserdampfsättigungsdruck erreicht.

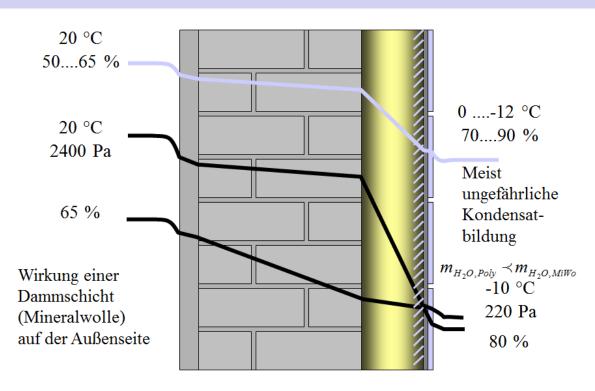






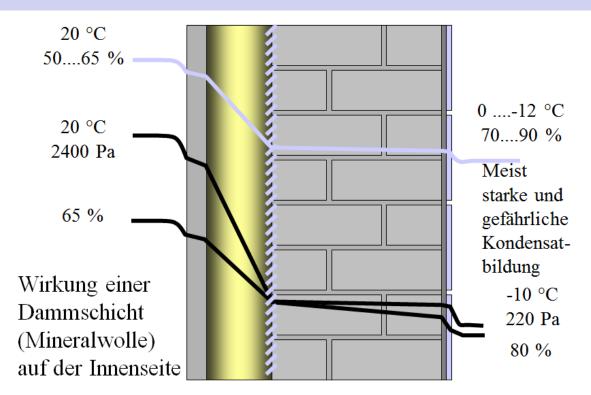
# Einflussgrößen

- Wasserdampfdiffusion (Diffusionswiderstandszahl, äquivalente Luftschichtstärke)
- •Kapillarer Wassertransport (Wasseraufnahme-, Wassereindringkoeffizient, kapillare Leitfähigkeit, Feuchtespeicherung, Sorptionsisotherme)
- Wärmetransport(Wärmeleitfähigkeit einzelner Schichten, Eigenschaftsänderung durch Feuchteeinfluss)



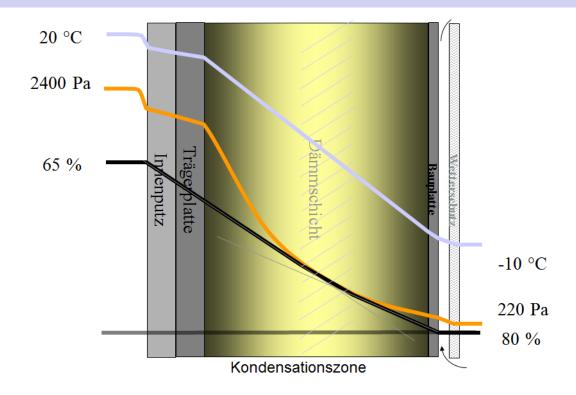

# **Glaserdiagramm**





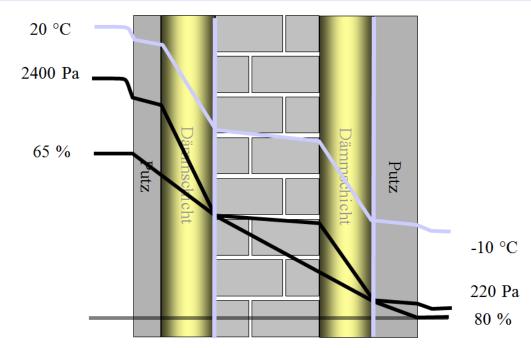

# Temperatur und Dampfdurckverlauf






# Temperatur und Dampfdurckverlauf






# Temperatur und Dampfdurckverlauf





# Temperatur und Dampfdurckverlauf



Tauwasserbildung mit zwei Kondensationsebene



# Übersicht

- •Allgemeines
- ■Porenstruktur von Baustoffen und ihre Eigenschafte
- Verwitterungsprozesse
- Kondensationsprozesse
- Befeuchtungsprozesse
- Deformationsprozesse



#### Befeuchtungsprozesse

- Befeuchtungsmechanismen
- Oberflächentemperaturen
- Kapillare Wasseraufnahme
- Wasseraufnahme durch drückende Feuchtigkeit
- Wasseraufnahme durch Kondensation
- Wasseraufnahme durch Sorption
- Hygroskopische Wasseraufnahme
- Bewitterung

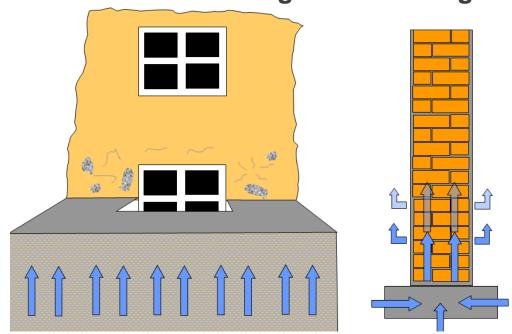


#### Befeuchtungsmechanismen

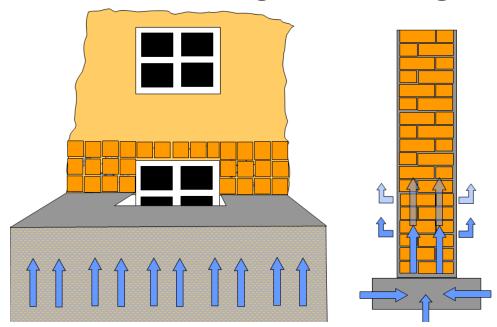
- Kapillare Wasseraufnahm
- ■Wasseraufnahme durch drückende Feuchtigkeit
- Wasseraufnahme durch Kondensation
- Wasseraufnahme durch Sorption
- Hygroskopische Wasseraufnahme



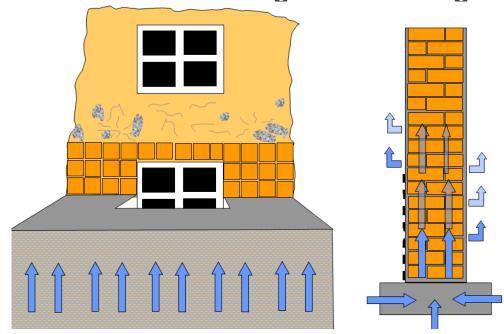






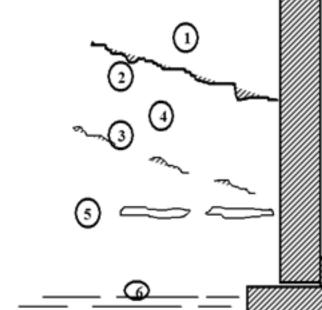









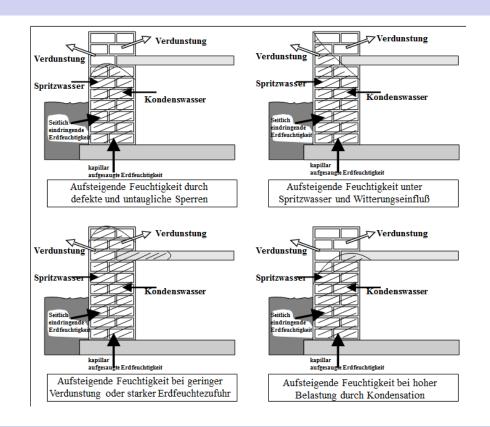






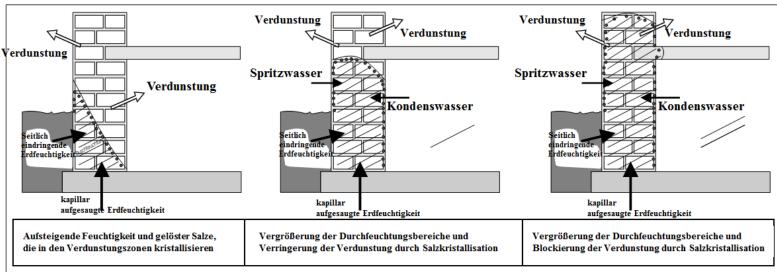






- 1 Oberflächenwasser
- 2 Sickerwasser
- 3 Stau- und Hangwasser
- 4 Kapillar- und Haftwasser
- 5 Schichtenwasser
- 6 Grundwasser



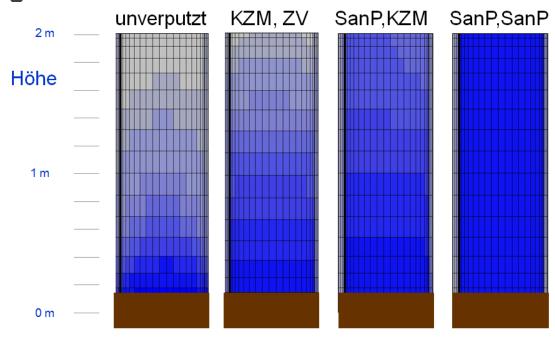
# Seitlich ins Mauerwerk eindringende Feuchte





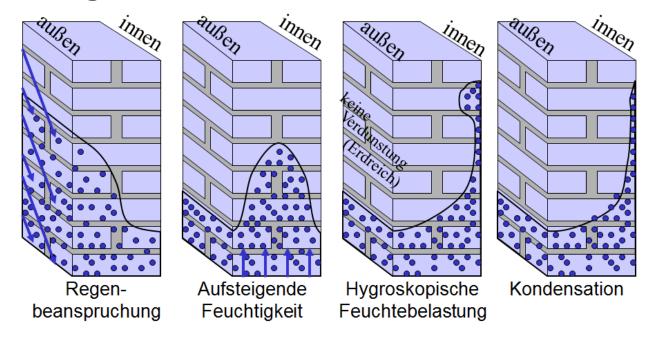






### Schadensentwicklung – Feuchtigkeits- und Salztransport



Schematische Darstellung der Schadensentwicklung durch die Wechselwirkung von Feuchtigkeits- und Salztransport in der Wand

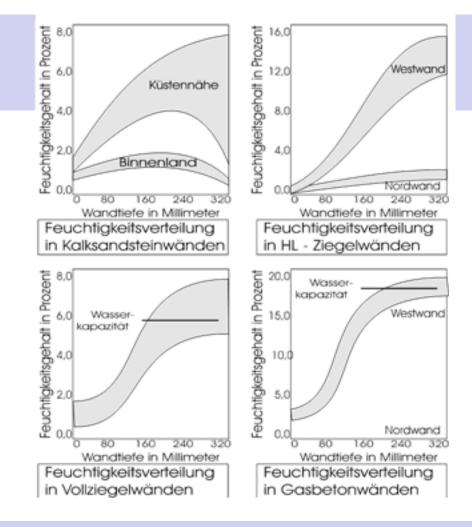



#### **Beispiel: Aufsteigende Mauerfeuchte**

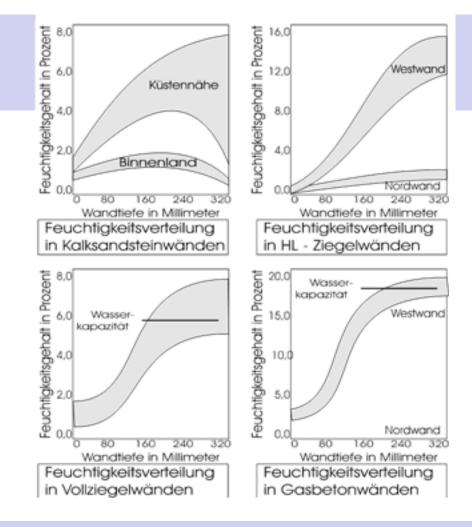




#### **Beispiel: Aufsteigende Mauerfeuchte**

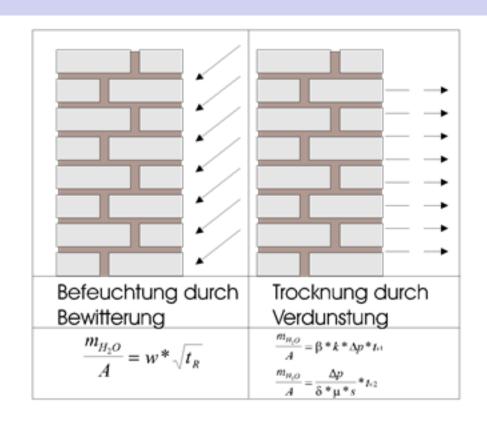






#### **Bewitterung**

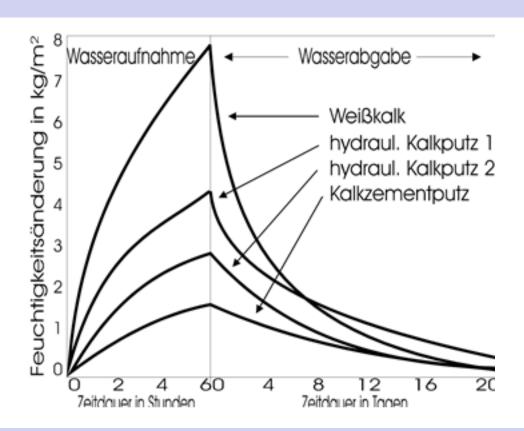
- Ursachen und Erscheinungsform von eindringendem Regenwasser
- Wasseraufnahme
- Wasserabgabe durch Verdunstung und Diffusion










# Feuchtebilanz von Fassaden





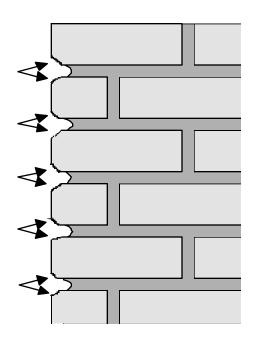
# Wasseraufnahme und Feuchtigkeitsabgabe von Außenputzen





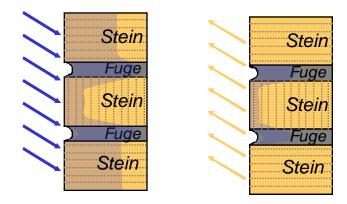
#### Wasseraufnahme und Feuchtigkeitsabgabe von Außenputzen

Zusammenfassend ergeben sich daraus für die Kennzeichnung der Wasseraufnahmefähigkeit von Baustoffen folgende Gruppeneinteilung


$$\begin{split} &w \leq 2.0 \; kg \; / \left(m^2 \cdot \sqrt{h}\right), \; s_d \leq 2.0 \; m \quad \text{wasserhemmend,} \\ &w \leq 0.5 \; kg \; / \left(m^2 \cdot \sqrt{h}\right), \; s_d \leq 2.0 \; m \quad \text{wasserabweisend,} \\ &w \leq 0.001 \; kg \; / \left(m^2 \cdot \sqrt{h}\right) \quad \text{wasserdicht.} \end{split}$$

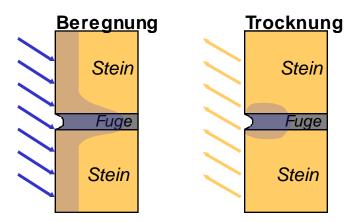
Für fassadentaugliche Beschichtungen sollten folgende Bedingungen erfüllt sein

$$w \le 0.5 \ kg / (m^2 \cdot \sqrt{h}), \ s_d \le 2.0 \ m \ s_d \cdot \mu = 0.1 \ \frac{kg}{m \cdot \sqrt{h}}$$



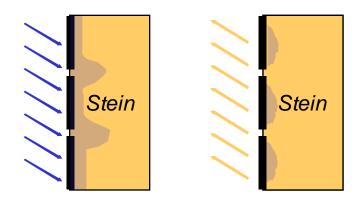

#### Kantenverwitterung




Schematische Darstellung der Kantenverwitterung an Mauerwerk als Folge der hygrischen Belastung im Bereich Stein-Fuge

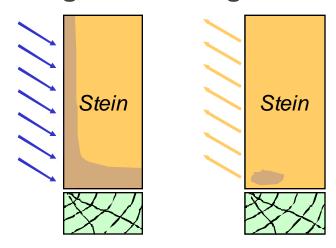





Anisotropie bei Sandsteinen und Bildung von Feuchtigkeitsnestern



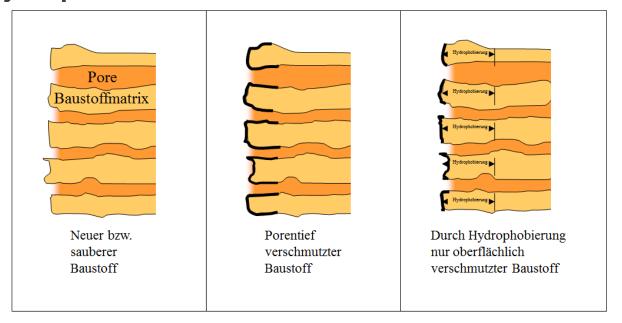



Fugenwirkung und Bildung von Feuchtigkeitsnestern



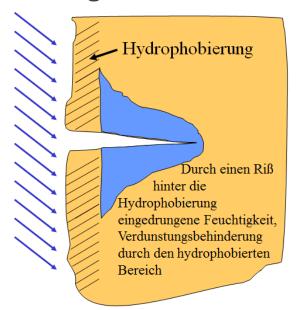


Oberflächenverkleidung und Bildung von Feuchtigkeitsnestern

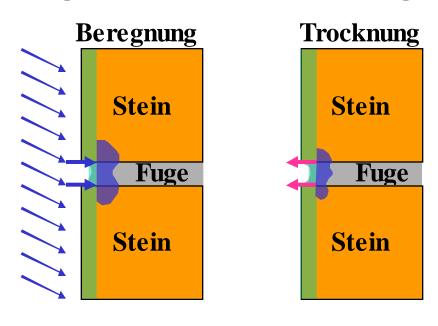





Wasseraufnahme bei Fachwerk und Bildung von Feuchtigkeitsnestern

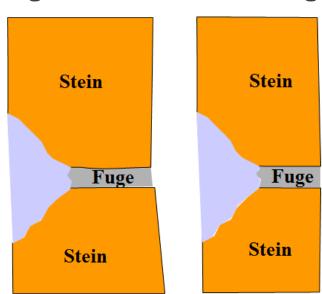



# Verschmutzung eines nicht hydrophobierten und eines hydrophobierten Baustoffs



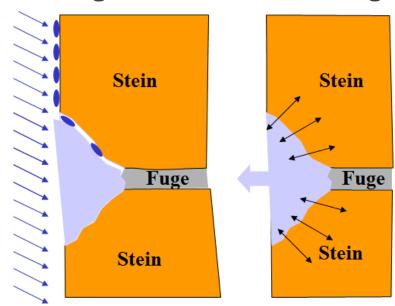



# Hinterwanderung einer Hydrophobierung durch einen Riss bei Schlagregenbelastung



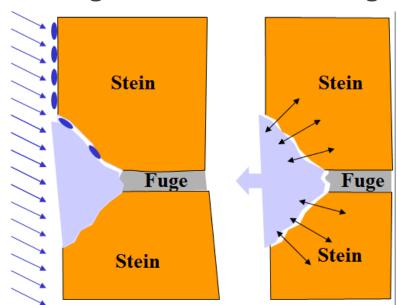






Ausbildung von Feuchtigkeits-Anreicherungen im Bereich von Fugen bei einer Oberflächen-Hydrophobierung






Wasseranreichernde Wirkung einer unrichtig sanierten Fuge





Wasseranreichernde Wirkung einer unrichtig sanierten Fuge





Wasseranreichernde Wirkung einer unrichtig sanierten Fuge



# Übersicht

- •Allgemeines
- ■Porenstruktur von Baustoffen und ihre Eigenschafte
- Verwitterungsprozesse
- Kondensationsprozesse
- Befeuchtungsprozesse
- Deformationsprozesse



#### **Deformationsprozesse**

- ■Thermische Formänderungsprozesse
- Hygrische Formänderungsprozesse



#### Thermische Formänderungsprozesse

Verändert sich die Temperatur eines Bauteils, so verändern sich durch die thermische Ausdehnung und Kontraktion die geometrischen Maße, die Längen und die Form des Bauteils. Die thermische Ausdehnung wird durch die folgenden beiden Gleichungen beschrieben:

$$\Delta l = \alpha \cdot l_0 \cdot \Delta t \qquad l = l_0 \cdot (1 + \alpha \cdot \Delta t)$$

lpha linearer Ausdehnungskoeffizient

 $l_{
m 0}$  Ausgangslänge

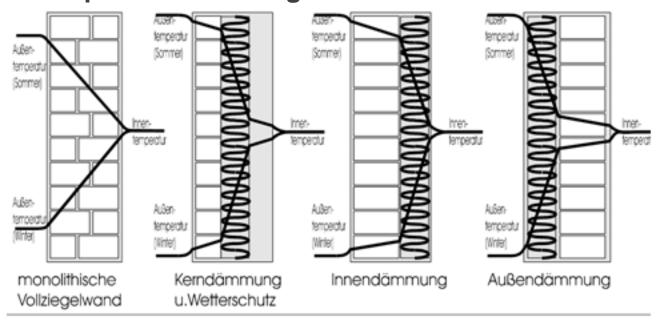
 $\Delta t$  Temperaturveränderung



#### Thermische Formänderungsprozesse

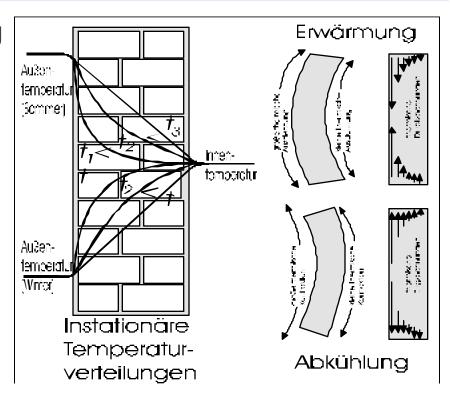
Kann diese thermische Ausdehnung als Folge des eingebauten Zustandes nicht kräftefrei erfolgen, so können sogenannte thermische Spannungen auftreten. Wenn keine Ausdehnung möglich ist, erreichen diese einen Maximalwert von

$$\sigma = E \cdot \alpha \cdot \Delta t$$


E - Elastizitätsmodel



| Baustoff      | Ausdehnungskoeffizient in K <sup>-1</sup> | Elastizitätsmodul E in N/mm² |  |
|---------------|-------------------------------------------|------------------------------|--|
| Kalkmörtel    | 0,000012                                  | 6000                         |  |
| Zementmörtel  | 0,000010                                  | 20000                        |  |
| Vollklinker   | 0,000006                                  | 15000                        |  |
| Klinker       | 0,000005                                  | 30000                        |  |
| Beton         | 0,000012                                  | 30000                        |  |
| Porenbeton    | 0,00008                                   | 1000                         |  |
| Kalksandstein | 0,00008                                   | 15000                        |  |
| Sandstein     | 0,000012                                  | 40000                        |  |
| Kalkstein     | 0,000006                                  | 30000                        |  |
| Granit        | 0,000007                                  | 20000                        |  |




# Stationäre Temperaturverteilung von Außenwänden





# Verstärkung der Deformationswirkung durch instationäre Einflüsse





# Wirkungen

| Außenwandtyp          | thermische Ausdehnung                                                                                                                                                                 | therm. Verwölbungsverh.                                                                 |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| monolithische<br>Wand | etwas gemäßigte (durch<br>Wärmeableitung) thermische<br>Ausdehnung und Kontraktion<br>der Außenseite der Wand                                                                         | relativ starke Verwölbung der<br>tragenden Schicht durch große<br>Temperaturdifferenzen |  |
| Kerndämmung           | starke Erwärmung und Abkühlung der Wetterschutzschicht, geringe Temperaturbelastung der tragenden Schicht, große Längendifferenzen zwischen tragender Schicht und Wetterschutzschicht | Geringe Verwölbung der<br>tragenden Schicht und der<br>Wetterschutzschicht              |  |
| Innendämmung          | starke Erwärmung und Abkühlung der tragenden Schicht, starke Temperaturbelastung und starkes thermische Arbeiten                                                                      | Geringe Verwölbung der<br>tragenden Schicht                                             |  |
| Außendämmung          | starke Erwärmung und Abkühlung der Putzschichten und starke Temperaturbelastung und starkes thermische Arbeiten, geringe Temperaturbelastung der tragenden Schicht                    | Geringe Verwölbung der<br>tragenden Schicht                                             |  |



#### Hygrische Formänderungsprozesse

Analog zu der thermischen Belastung und der dadurch hervorgerufenen Formveränderung bzw. Spannungsbelastung ruft auch die Einlagerung von Feuchtigkeit und die Trocknung Quell- und Schwindvorgänge hervor. Zur Beschreibung der hygrischen Formveränderungsvorgänge benutzt man folgenden Zusammenhang:

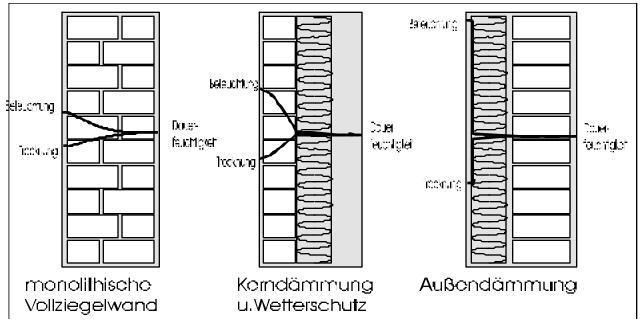
$$\Delta l = \varepsilon_F \cdot l_0$$

 $\mathcal{E}_F$  .. relative Dehnung bei Sättigung des Baustoffs mit Feuchtigkeit



#### Hygrische Formänderungsprozesse

Im allgemeinen wird nur die Dehnung bei Sättigungsfeuchtigkeit verwendet. Ein vom Feuchtigkeitsgehalt abhängigen hygrischen Ausdehnungskoeffizienten wird weniger benutzt.




#### Quell- und Schwindmaße für Baustoffe

| Baustoff        | Quell- und Schwindmaß $arepsilon_{F}$ in mm/m |
|-----------------|-----------------------------------------------|
| Beton           | 0,050,140,2                                   |
| Leichtbeton     | 0,20,30,81,0                                  |
| Gassilikatbeton | 0,2                                           |
| Gips            | 0,08 . 0,5                                    |
| Holzbeton       | 3,05,0                                        |
| Sandstein       | 0,03 6,0                                      |
| Ziegel          | 0,12                                          |
| Epoxidharz      | 0,010,02                                      |
| Polyesterharz   | 0,02 0,025                                    |



# Feuchtigkeitsverteilung von Außenwänden





# Wirkungen

| Außenwandtyp          | hygrische Ausdehnung                                                                                                                                            | hygr. Verwölbungsverhalten                    |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| monolithische<br>Wand | gemäßigte (durch<br>Feuchtigkeitsableitung)<br>hygrische Ausdehnung und<br>Kontraktion der Außenseite der<br>Wand                                               | geringfügige Verwölbung der<br>tragenden Wand |  |  |
| Kerndämmung           | stärkere Befeuchtung und<br>Trocknung der Wetterschutz-<br>schicht, da durch die<br>Wärmedämmschicht die<br>Feuchtigkeitslast nicht mehr<br>"abgepuffert" wird. | Geringe Verwölbung der<br>Wetterschutzschicht |  |  |
| Außendämmung          | starke Befeuchtung und<br>Trocknung der Putzschichten<br>und Bekleidungen, da durch die<br>Wärmedämmschicht keine<br>"Abpufferung" mehr erfolgt.                |                                               |  |  |



## Maximale Druck- und Zugfestigkeit von Baustoffen

| Baustoff         | Elastizitätsmodul in N/mm² | Druckfestigkeit<br>in N/mm² | Zugfestigkeit<br>in N/mm² |
|------------------|----------------------------|-----------------------------|---------------------------|
| Mauerziegel      | 15000 - 20000              | 10 - 35                     | 2                         |
| Klinker          | 20000 - 40000              | 45 - 75                     | 5 - 10                    |
| Beton            | 20000 - 40000              | 45                          | 3,5                       |
| Zementmörtel     | 20000                      | 10                          | 1 - 2                     |
| Mörtelgruppe III | 8000 - 15000               | 10                          | 1 - 2                     |
| Mörtelgruppe II  | 6000                       | 2 - 5                       | 0,3                       |
| Mörtelgruppe I   | 6000                       | 1                           | ≈ 0                       |



#### Maximalspannung - Temperatur

•Unterliegen Baustoffe einer Temperaturveränderung ohne das sie sich thermisch ausdehnen können, da sie im Gebäude oder Steinverband eingebaut sind, entwickeln sich laut Gleichung die Maximalspannung

$$\sigma_{\Lambda t} = E \cdot \alpha \cdot \Delta t$$



### Maximalspannung - Feuchtigkeit

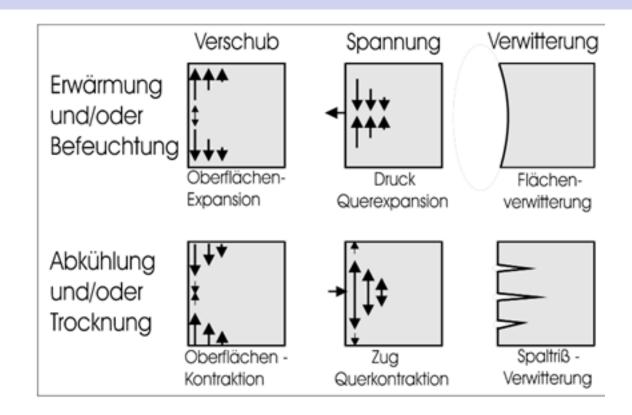
Ist ein Baustoff mit Feuchtigkeit gesättigt ohne das sich der hygrische Quellvorgang durch einen eingebauten Zustand vollziehen kann, so entwickeln sich die folgende hygrischen Spannungen:

$$\sigma_F = \varepsilon_F \cdot E$$



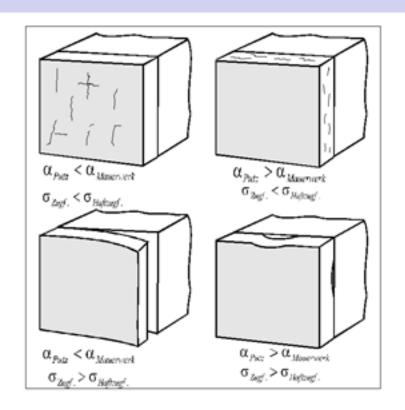
#### Maximalspannung – Kombination Temperatur und Feuchtigkeit

■Wirken sowohl Temperatur- als auch Feuchte-Belastungen zur gleichen Zeit, können sich beide Effekte überlagern:


$$\sigma_{\max} = \sigma_{\Delta t} + \sigma_F = E \cdot (\alpha \cdot \Delta t + \varepsilon_F)$$



## Maximale Spannungen in Baustoffen - Verwitterungsverhalten


| Baustoff   | Zugf.in | E-Modul | αin    | α·10° <b>in</b> | $\varepsilon_{\scriptscriptstyle F}$ in | $E(\alpha\Delta t + \varepsilon_F)$ | Verwitterung |
|------------|---------|---------|--------|-----------------|-----------------------------------------|-------------------------------------|--------------|
|            | N/mm²   | in      | mm/m*K |                 | mm/                                     | in                                  |              |
|            |         | N/mm²   |        | mm/m            | m                                       | N/mm²                               |              |
| Kalkmörtel | 0,3     | 6000    | 0,012  | 0,12            | 0,40                                    | 3,1                                 | stark        |
| Zementm.   | 1,5     | 20000   | 0,010  | 0,10            | 0,20                                    | 6                                   | stark        |
| Gasbeton   | 0,3     | 1000    | 0,008  | 0,08            | 0,40                                    | 0,48                                | stark        |
| Ziegel     | 2       | 15000   | 0,006  | 0,06            | 0,07                                    | 2                                   | gering       |
| Beton      | 3,5     | 30000   | 0,012  | 0,12            | 0,14                                    | 7,8                                 | mittel       |
| Kalksand-  | 0,8     | 10000   | 0,008  | 0,08            | 0,10                                    | 1,8                                 | mittel       |
| stein      |         |         |        |                 |                                         |                                     |              |
| Sandstein  | 6       | 30000   | 0,011  | 0,11            | 0,30                                    | 13                                  | mittel       |
| Kalkstein  | 8       | 30000   | 0,006  | 0,06            | 0,10                                    | 5                                   | gering       |
| Granit     | 10      | 10000   | 0,007  | 0,07            | 0,08                                    | 1,5                                 | gering       |







# Schadensbilder von Putzschichten

